-
alamoutiSTBC
program for alamouti STBC
- 2010-09-13 14:33:52下载
- 积分:1
-
ydm
利用MATLAB完成fsk调制的一段源代码,看一下吧,也许有用(Fsk modulation using MATLAB to complete a section of source code, take a look at it, might be useful to)
- 2010-01-18 22:38:45下载
- 积分:1
-
KNN
关于K近邻的一些列子和程序,可以更深入的了解近邻法(Some neighbors on K Liezi and procedures can be more in-depth understanding of neighbor law)
- 2014-11-05 21:35:40下载
- 积分:1
-
UCA-ESPRIT_DOA
二维的圆阵的doa估计算法实现,实现二维的doa估计(2-d doa estimation algorithm for the circle array)
- 2015-10-28 10:44:04下载
- 积分:1
-
MatlabDigitalSignalProcessing
Matlab下的数字信号处理示例,各种数字信号处理的实现(Digital signal processing under Matlab example, the realization of various digital signal processing)
- 2010-09-15 20:20:58下载
- 积分:1
-
cc_sisosimomiso_final
It calculate and plot the capacity of SISO,MISO and SIMO and compare it with SNR.
- 2010-09-18 11:17:38下载
- 积分:1
-
arima
arima时间序列模型,对一个序列进行也测(arima time series models, also measured on a sequence)
- 2014-10-03 09:18:09下载
- 积分:1
-
MATLAB-writing-style-
matlab编程风格指南,比较系统的讲解了mantlab的编程习惯于编程要素(matlab writing style)
- 2014-11-29 16:19:30下载
- 积分:1
-
sift
1 SIFT 发展历程
SIFT算法由D.G.Lowe 1999年提出,2004年完善总结。后来Y.Ke将其描述子部分用PCA代替直方图的方式,对其进行改进。
2 SIFT 主要思想
SIFT算法是一种提取局部特征的算法,在尺度空间寻找极值点,提取位置,尺度,旋转不变量。
3 SIFT算法的主要特点:
a) SIFT特征是图像的局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳定性。
b) 独特性(Distinctiveness)好,信息量丰富,适用于在海量特征数据库中进行快速、准确的匹配[23]。
c) 多量性,即使少数的几个物体也可以产生大量SIFT特征向量。
d) 高速性,经优化的SIFT匹配算法甚至可以达到实时的要求。
e) 可扩展性,可以很方便的与其他形式的特征向量进行联合。
4 SIFT算法步骤:
1) 检测尺度空间极值点
2) 精确定位极值点
3) 为每个关键点指定方向参数
4) 关键点描述子的生成
本包内容为sift算法matlab源码(1 SIFT course of development
SIFT algorithm by DGLowe in 1999, the perfect summary of 2004. Later Y.Ke its description of the sub-part of the histogram with PCA instead of its improvement.
2 the SIFT main idea
The SIFT algorithm is an algorithm to extract local features in scale space to find the extreme point of the extraction location, scale, rotation invariant.
3 the main features of the SIFT algorithm:
a) SIFT feature is the local characteristics of the image, zoom, rotate, scale, brightness change to maintain invariance, the perspective changes, affine transformation, the noise also maintain a certain degree of stability.
b) unique (Distinctiveness), informative, and mass characteristics database for fast, accurate matching [23].
c) large amounts, even if a handful of objects can also produce a large number of SIFT feature vectors.
d) high-speed and optimized SIFT matching algorithm can even achieve real-time requirements.
e) The scalability can be very convenient fe)
- 2012-05-25 15:31:16下载
- 积分:1
-
k
说明: 模式识别中的K均值聚类分析方法,该方法力偶那个迭代过程来进行处理,一步步逼近结果(Pattern Recognition Analysis of K-means clustering method Couple iterative process to deal with that, step by step approach results)
- 2010-09-05 14:39:48下载
- 积分:1