登录
首页 » matlab » IMC1

IMC1

于 2013-04-15 发布 文件大小:10KB
0 177
下载积分: 1 下载次数: 21

代码说明:

  本仿真基于李雅普诺夫稳定理论设计的内模自适应控制仿真(The simulation based on Lyapunov stability theory designed internal model adaptive control simulation)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • FastEMD-1
    对于初学者很有用的EMD程序。供大家参考。(EMD useful for the beginner process. For your reference.)
    2011-05-06 19:48:42下载
    积分:1
  • MIMO-OFDM-Simulator
     多输入多输出正交分频多工模拟器。      正交分频多工:OFDM模拟器(外层函数)         create_channel:产生一个瑞利衰落信道复用,解的天线配置、正交分频多工结构、power-delay档案。         svd_decompose_channel:既然全网络知识是假设,在并行传输奇异值模式。这个函数分解这些频道模式。         BitLoad:适用bit-loading算法来实现预期的钻头和能量 (MIMO OFDM Simulator: OFDM.m: OFDM Simulator (outer function) create_channel.m: Generates a Rayleigh fading frequency-selective channel, parametrized by the antenna configuration, the OFDM configuration, and the power-delay profile. svd_decompose_channel.m: Since full channel knowledge is assumed, transmission is across parallel singular value modes. This function decomposes the channel into these modes. BitLoad.m: Apply the bit-loading algorithm to achieve the desired bit and energy allocation for the current channel instance. ComputeSNR.m: Given the subcarrier gains, this simple function generates the SNR values of each channel (each singular value on each tone is a separate channel). chow_algo.m: Apply Chow s algorithm to generate a particular bit and energy allocation. EnergyTableInit.m: Given the SNR values, form a table of energy increments for each channel. campello_algo.m: Apply Campello s algorithm to converge to the optimal bit and energy allocatio)
    2012-04-30 10:09:02下载
    积分:1
  • ZG
    说明:  病态矩阵HILBERT,正则化高斯消元法,cholesky分解法(Ill-conditioned matrix HILBERT, regularization of Gaussian elimination method, cholesky decomposition)
    2013-04-14 22:15:48下载
    积分:1
  • GPS_INS111
    使用MATLAB写的惯性卫星组合导航卡尔曼滤波器程序(Using MATLAB to write inertial satellite combination navigation Kalman filter program)
    2017-05-25 23:43:59下载
    积分:1
  • cosPfliplr
    文献中很多EMD分解算法中抑制端点效应的窗函数法和镜像延拓法结合的程序,使用两个程序可以大大改善EMD的端点效应。(Many literature EMD decomposition algorithm for end effect of suppressing window function method and mirror extension method combined procedure using both programs can greatly improve the end effect of EMD.)
    2016-08-12 18:57:17下载
    积分:1
  • Entropy_detection
    Entropy Detection in Cognitive Radio
    2010-05-19 13:18:11下载
    积分:1
  • Hamming-code
    模拟产生(7,4)汉明码及其监督矩阵,并用产生的监督矩阵判断传输的码字是否有错,如果有错,指示出其出面错误的位置 (Simulated (7,4) Hamming code and its monitoring matrix, and supervision of the resulting matrix to judge transmission codeword is wrong, if wrong, indicating that it came forward to the wrong location)
    2012-05-07 15:35:17下载
    积分:1
  • Kjunzhijulei
    使用k均值算法对多个数据集进行分类,已测试通过,简单易懂(classification to many datasets using k-means algorithm ,simple and easy-understanding.)
    2013-11-09 01:18:48下载
    积分:1
  • 北航
    说明:  自己保存的北航的集和的sar代码 可以下载学习(Save your own beihang set and THE SAR code can be downloaded to learn)
    2020-09-04 16:07:11下载
    积分:1
  • Minimum-Risk-Bayes-classifier
    这是模式识别中最小风险Bayes分类器的设计方案。在参考例程的情况下,自行完善了在一定先验概率的条件下,男、女错误率和总错误率的统计,放入各个数组当中。 全部程序由主函数、最大似然估计求取概率密度子函数、最小错误率贝叶斯分类器决策子函数三块组成。 调用最大似然估计求取概率密度子函数时,第一步获取样本数据,存储为矩阵;第二步对矩阵的每一行求和,并除以样本总数N,得到平均值向量;第三步是应用公式(3-43)采用矩阵运算和循环控制语句,求得协方差矩阵;第四步通过协方差矩阵求得方差和相关系数,从而得到概率密度函数。 调用最小风险贝叶斯分类器决策子函数时,根据先验概率,再根据自行给出的5*5的决策表,通过比较概率大小判断一个体重身高二维向量代表的人是男是女,放入决策数组中。 主函数第一步打开“MAIL.TXT”和“FEMALE.TXT”文件,并调用最大似然估计求取概率密度子函数,对分类器进行训练。第二步打开“test2.txt”,调用最小风险贝叶斯分类器决策子函数,然后再将数组中逐一与已知性别的数据比较,就可以得到在一定先验概率条件下,决策表中不同决策的错误率的统计。 (This is a pattern recognition classifier minimum risk Bayes design .In reference to the case of routine , self- improvement in a certain a priori probability conditions, male , female and total error rate error rate statistics , into which each array . All programs from the main function , maximum likelihood estimation subroutine strike probability density , the minimum error rate Bayesian classifier composed of decision-making three subfunctions . Strike called maximum likelihood estimate probability density subroutine , the first step to obtain the sample data , stored as a matrix the second step of the matrix, each row sum , and divided by the total number of samples N, be the average vector The third step is the application of the formula ( 3-43 ) using matrix and loop control statements , obtain the covariance matrix fourth step through the variance-covariance matrix and correlation coefficient obtained , resulting in the probability density function . Bayesian classifier )
    2012-02-02 20:37:04下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载