-
wavelets
matlab 刚刚接触 在做小波方便 传一个小波去噪程序 很简单的(a simple wavelets denoise function)
- 2010-12-30 20:10:47下载
- 积分:1
-
fullyctrlR
single phase full control converter r load
- 2013-01-31 13:10:48下载
- 积分:1
-
MATLAB
MATLAB神经网络仿真与应用[张德丰][程序源代码](MATLAB Neural Network Simulation and Application of [Zhang Defeng] [source code])
- 2010-01-10 17:05:04下载
- 积分:1
-
l-m_based
说明: 基于相位相关和L-M的图像拼接算法,感兴趣的可以参考一下。(Phase correlation and the LM-based image mosaic algorithm)
- 2010-04-11 21:44:52下载
- 积分:1
-
mvdrGen
Algorithm for Generating Random Number with Multi-dimensional Discrete Distribution
- 2014-11-18 07:23:15下载
- 积分:1
-
Navier-Stokes 方程
说明: 用来解矩形区域不可压缩 Navier-Stokes 方程的(Solving incompressible Navier-Stokes equation in rectangular region)
- 2020-06-16 05:40:01下载
- 积分:1
-
fast_thining
matlab 实现快速细化算法以及对消除模板的改进(Matlab to realize the quick thinning algorithm and the improvements to eliminate the template)
- 2014-10-24 15:28:06下载
- 积分:1
-
job
有m台不同的机器,n个不同的工件。每个工件有多道工序,每道工序由指定的机器在固定的时间内完成。一道工序一旦开始处理,就不能中断。每台机器一次只能处理一道工序。一个调度就是决定每台机器上工序的处理顺序,使得机器完成所有工件的时间最短。具体的,该问题就是要求在满足(1)、(2)两个约束条件的前提下,确定每台机器上工序的顺序,使加工的时间跨度(从开始加工到全部工件都加工完所需要的时间)达到最小。其中,(1)表示工件约束条件:对每个工件而言,机器对它的加工路线是事先确定的;(2)表示机器约束条件:对每台机器而言,一次只能对一道工序进行加工。()
- 2007-09-18 23:30:48下载
- 积分:1
-
pianweifen
偏微分方程的matlab程序,可作为数值分析等的学习工具。(Partial differential equations matlab program, can be used as numerical analysis , and other learning tools.)
- 2012-04-13 16:48:26下载
- 积分:1
-
fecgm
独立成份分析(ICA)以及winner滤波 Source separation of complex signals with JADE.
Jade performs `Source Separation in the following sense:
X is an n x T data matrix assumed modelled as X = A S + N where
o A is an unknown n x m matrix with full rank.
o S is a m x T data matrix (source signals) with the properties
a) for each t, the components of S(:,t) are statistically
independent
b) for each p, the S(p,:) is the realization of a zero-mean
`source signal .
c) At most one of these processes has a vanishing 4th-order
cumulant.
o N is a n x T matrix. It is a realization of a spatially white
Gaussian noise, i.e. Cov(X) = sigma*eye(n) with unknown variance
sigma. This is probably better than no modeling at all...( Source separation of complex signals with JADE.
Jade performs `Source Separation in the following sense:
X is an n x T data matrix assumed modelled as X = A S+ N where
o A is an unknown n x m matrix with full rank.
o S is a m x T data matrix (source signals) with the properties
a) for each t, the components of S(:,t) are statistically
independent
b) for each p, the S(p,:) is the realization of a zero-mean
`source signal .
c) At most one of these processes has a vanishing 4th-order
cumulant.
o N is a n x T matrix. It is a realization of a spatially white
Gaussian noise, i.e. Cov(X) = sigma*eye(n) with unknown variance
sigma. This is probably better than no modeling at all...)
- 2010-05-27 23:08:51下载
- 积分:1