pso-bp
粒子群算法,也称粒子群优化算法(Particle Swarm Optimization),缩写为 PSO, 是近年来发展起来的一种新的进化算法(Evolutionary Algorithm - EA)。PSO 算法属于进化算法的一种,和模拟退火算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover) 和“变异”(Mutation) 操作,它通过追随当前搜索到的最优值来寻找全局最优。这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性。粒子群算法是一种并行算法。
BP(Back Propagation)神经网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。(Particle swarm optimization, also known as particle swarm optimization (Particle Swarm Optimization), abbreviated as PSO, is a new evolutionary algorithm developed in recent years (Evolutionary Algorithm- EA). Kind, and simulated annealing algorithm PSO algorithm is similar evolutionary algorithms, it is also starting a random solution, through an iterative search for the optimal solution, which is also used to uate the quality through fitness solution, but it is simpler than genetic algorithm rules It has no genetic algorithm " crossover" (Crossover) and " variant" (Mutation) operation, which by following the current search to find the optimal value to the global optimum. This algorithm is its easy implementation, high accuracy, fast convergence, etc. attracted academic attention and show its superiority in solving practical problems. PSO algorithm is a parallel algorithm. BP (Back Propagation) neural network is a 1986 team of scientists headed by Rumelhart and McC)
- 2020-10-29 22:19:56下载
- 积分:1
one
产生右图所示图像f1(m,n),其中图像大小为256×256,中间亮条为128
×32,暗处=0,亮处=100。对其进行FFT:
① 同屏显示原图f1(m,n)和FFT(f1)的幅度谱图;
② 若令f2(m,n)=(-1)m+n f1(m,n),重复以上过程,比较二者幅度
谱的异同,简述理由;
③ 若将f2(m,n)顺时针旋转90 度得到f3(m,n),试显示FFT(f3)的幅
度谱,并与FFT(f2)的幅度谱进行比较;
④ 若将f1(m,n) 顺时针旋转90 度得到f4(m,n),令f5(m,n)=f1(m,n)+f4(m,n),试显
示FFT(f5)的幅度谱,并指出其与FFT(f1)和FFT(f4)的关系;
⑤ 若令f6(m,n)=f2(m,n)+f3(m,n),试显示FFT(f6)的幅度谱,并指出其与FFT(f2)和
FFT(f3)的关系,比较FFT(f6)和FFT(f5)的幅度谱。(Generating an image f1 (m, n) shown in the figure, wherein the image size is 256 256, the intermediate light bar 128 32 0 = dark, bright Department 100. Its FFT: ① screen display picture f1 (m, n) and the FFT (f1) of the amplitude spectrum ② If so f2 (m, n) = (-1) m+n f1 (m, n), repeat The above process, comparing the amplitude spectrum of the similarities and differences between the two, brief reasons ③ If f2 (m, n) 90 degrees clockwise to get f3 (m, n), try to display FFT (f3) the amplitude spectrum and with the FFT (f2) comparing the amplitude spectrum ④ If f1 (m, n) obtained by 90 degrees clockwise f4 (m, n), so f5 (m, n) = f1 (m, n)+f4 (m, n ), try to display FFT (f5) amplitude spectrum, and pointed out its relationship with the FFT (f1) and FFT (f4) of ⑤ If so f6 (m, n) = f2 (m, n)+f3 (m, n) and try to display the FFT (f6) amplitude spectrum, and pointed out its relationship with the FFT (f2) and FFT (f3), comparing FFT (f6) and FFT (f5) amplitude spectrum.)
- 2013-11-26 16:24:18下载
- 积分:1