-
LiveWireAuto
这是典型的图像分割Livewire算法的源码 结合OPENCV,配置一下就可以用了(This is a typical source image segmentation algorithm Livewire combination OPENCV, can be used to configure what)
- 2020-12-31 14:58:59下载
- 积分:1
-
GLDM
基于灰度共生矩阵的纹理特征提取。特征参数为:熵,能量,(GLCM-based texture feature extraction. The characteristic parameters: entropy, energy,)
- 2012-05-31 12:06:10下载
- 积分:1
-
vechicle-detection
车辆检测跟踪,采用matlab编程,可对车辆进行目标跟踪与检测(Vehicle detection and tracking)
- 2012-07-30 09:29:41下载
- 积分:1
-
Haralick
计算灰度共生距的matlab源代码Haralick Texture Features Matlab Toolbox v0.1b(Calculation of gray symbiotic matlab source code from the Haralick Texture Features Matlab Toolbox v0.1b)
- 2009-01-14 16:48:47下载
- 积分:1
-
TurboPixels超像素生成代码
TurboPixels超像素生成算法,matlab运行,(TurboPixels super pixel generation algorithm)
- 2021-03-11 10:09:26下载
- 积分:1
-
afdpf
正反馈主动频率偏移法,是应用于孤岛检测的一种算法,可以减小检测盲区,加快孤岛检测速度(Positive feedback active frequency offset method is an algorithm used in islanding detection)
- 2017-01-11 18:19:42下载
- 积分:1
-
SAR合成孔径雷达图像点目标(附matlab代码)
SAR合成孔径雷达的点目标仿真报告,含matlab代码(SAR synthetic aperture radar point target simulation report, including Matlab code)
- 2020-06-26 23:00:02下载
- 积分:1
-
hsi2rgb
用MATLAB实现从颜色空间hsi到rgb空间的转换。(MATLAB hsi from color space to the rgb space conversion.)
- 2007-04-15 12:06:04下载
- 积分:1
-
sy
说明: 压缩感知的经典代码,包括观测,稀疏表示,重建,其中观测用的高斯观测矩阵,稀疏用的DCT,重建用的OMP算法(Compressed sensing of the classic code, including observations, sparse representation, reconstruction, observed with a Gaussian observation matrix, sparse use of the DCT, re-use of the OMP algorithm)
- 2011-11-29 14:43:19下载
- 积分:1
-
demoBagSVM
一种基于半监督的svm的图像分类方法。该方法通过聚类核的方法利用无标记样本局部正则化训练核的表达式。这种方法通过图像直接学习一个自适应的核。该程序仿真的是文章:Semi-supervised Remote Sensing Image Classification with Cluster Kernels。大家可以参考下。(A semi-supervised SVM is presented for the classification of remote sensing images. The method exploits the wealth of unlabeled samples for regularizing the training kernel representation locally by means of cluster kernels. The method learns a suitable kernel directly from the image, and thus avoids assuming a priori signal relations by using a predefined kernel structure. Good results are obtained in image classification examples when few labeled samples are available. The method scales almost linearly with the number of unlabeled samples and provides out-of-sample predictionsds)
- 2013-09-03 10:44:56下载
- 积分:1