登录
首页 » matlab » P_MAP

P_MAP

于 2011-12-15 发布 文件大小:1KB
0 201
下载积分: 1 下载次数: 37

代码说明:

  Maximum A Posteriori probablity (MAP) algorithm

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • xxt
    用C编写的地震资料楔形体模型,可以变换参数,简单通用(Written using C seismic data wedge model, may come and go parameters, simple and universal)
    2010-07-14 09:38:00下载
    积分:1
  • LensDesign
    this is a lens designing book
    2009-05-08 12:54:42下载
    积分:1
  • matlab20and20BP
    for load forecasting paper
    2008-05-22 14:27:27下载
    积分:1
  • hibernate_annotation
    hinbernate的练习适合新手的学习和使用。(Three practical feasibility of SSH framework)
    2015-03-04 19:18:07下载
    积分:1
  • aero_gen
    aerogenerator model for wind turbine
    2010-10-05 20:40:36下载
    积分:1
  • Abstract
    it s a communication document
    2014-11-15 15:00:56下载
    积分:1
  • popfnn
    说明:  popfnn神经网络,它是一种模糊伪输出的神经网络(pseudo-outer-production fuzzy nerual network).可用于模式识别。运行pop1可以训练输入的特征向量,extractionpop使用来抽取图片的特征向量的。(popfnn neural network, it is a pseudo-output fuzzy neural network (pseudo-outer-production fuzzy nerual network). can be used for pattern recognition. Can be trained to run pop1 input feature vector, extractionpop used to extract the image feature vector.)
    2010-04-21 21:28:23下载
    积分:1
  • OFDM-simulation
    QAM和OFDM两种方式性能对比,具有图形界面GUI,并且包括收发两端完成的代码 (QAM and OFDM performance comparison of two ways, with a graphical interface GUI, and includes the sending and receiving ends to complete the code)
    2013-11-29 20:01:24下载
    积分:1
  • dip2
    说明:  基于信息融合的图像边缘检测方法研究,⑴直方图均衡化(histogram equalization),⑵直方图匹配(histogram matching),⑶邻域平均(neighborhood averaging),⑷局域增强(local enhancement), ⑸中值滤波(median filtering)。(Edge detection method, 1 histogram equalization (histogram equalization). 2 histogram matching (histogram matching). 3 Neighborhood average (neighborhood averaging) 4 Local Enhancement (local enhancement). together median filter (median filtering).)
    2006-05-14 17:16:31下载
    积分:1
  • ECG
    The early detection of arrhythmia is very important for the cardiac patients. This is done by analyzing the electrocardiogram (ECG) signals and extracting some features from them. These features can be used in the classification of different types of arrhythmias. In this paper, we present three different algorithms of features extraction: Fourier transform (FFT), Autoregressive modeling (AR), and Principal Component Analysis (PCA). The used classifier will be Artificial Neural Networks (ANN). We observed that the system that depends on the PCA features give the highest accuracy. The proposed techniques deal with the whole 3 second intervals of the training and testing data. We reached the accuracy of 92.7083 compared to 84.4 for the reference that work on a similar data.
    2011-09-22 19:15:10下载
    积分:1
  • 696516资源总数
  • 106409会员总数
  • 8今日下载