登录
首页 » matlab » gaussian-smoothing-filter

gaussian-smoothing-filter

于 2013-12-19 发布 文件大小:241KB
0 160
下载积分: 1 下载次数: 15

代码说明:

  高斯平滑滤波,属于低通滤波,有效去除图像噪声。(Gaussian smoothing filter, a low pass filter effectively removes image noise.)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • NotifikasiFB
    notification in website like facebook
    2014-01-26 17:25:07下载
    积分:1
  • IFFTOFDM
    基于傅立叶变换的ofdm模型信道是高斯信道(OFDM model based on fft transform)
    2013-05-19 10:28:02下载
    积分:1
  • PCA2
    Princilpe Component Analysis n
    2015-04-09 22:02:01下载
    积分:1
  • The-sourcecode-of-neural-network
    关于神经网络算法的展示代码 有matlab与c#两种实现方式(Show on neural network algorithm matlab code has two implementations with c#)
    2013-12-31 20:15:47下载
    积分:1
  • CNN
    经典的卷积神经网络MATLAB实现源码,可直接运行。(Classical convolutional neural network MATLAB implementation source code, can be directly run.)
    2020-10-26 22:29:59下载
    积分:1
  • KMEANS
    关于kmeans 的算法,和如何验证匹配准确率的算法(About kmeans algorithm, and how to verify the accuracy of the algorithm matches)
    2011-04-28 19:08:10下载
    积分:1
  • 利用Capon, MUSIC进行窄带信号空域信号方向估计 capon_music_doa
    利用Capon, MUSIC进行窄带信号空域信号方向估计。比较分辨率性能。观察阵元数、信噪比、快拍数对估计器性能的影响。 (Using Capon, MUSIC for narrowband signal airspace signal direction estimates. Comparative resolution performance. Observe the number of array elements, signal to noise ratio, the number of snapshots on the estimator performance.)
    2020-06-28 10:40:02下载
    积分:1
  • emd
    利用matlab离线处理数据实现经验模式分解(EMD)算法(Offline data processing using matlab to achieve empirical mode decomposition (EMD) algorithm)
    2013-11-13 18:42:34下载
    积分:1
  • SVM
    用matlab实现支持向量机功能,可以进行四种核函数的选择,简单实用(support vector machine)
    2013-11-14 14:53:14下载
    积分:1
  • 基于PCA的SVM分类
    说明:  选择“BreastCancer”数据集,使用支持向量机(SVM)对其进行分类。作为对比,第一次对特征集直接进行支持向量机分类,第二次对特征集进行主成分分析法的特征提取后,再对特征提取后的特征集进行支持向量机分类。并且对比和分析了两次分类的结果。(The BreastCancer data set is selected and classified by Support Vector Machine (SVM). For comparison, the first time the feature set is classified directly by support vector machine, the second time the feature set is extracted by principal component analysis, and then the feature set is classified by support vector machine. The results of the two classifications are compared and analyzed.)
    2020-06-20 10:20:02下载
    积分:1
  • 696518资源总数
  • 106215会员总数
  • 5今日下载