登录
首页 » matlab » RLS

RLS

于 2013-12-20 发布 文件大小:1KB
0 202
下载积分: 1 下载次数: 6

代码说明:

  RLS算法主要适用于数字信号处理的fir和iir数字滤波器(RLS algorithm )

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 基于MATLAB完成的神经网络源
    在matlab6.5下实现的 (achieved in the matlab6.5)
    2005-01-10 15:53:55下载
    积分:1
  • Pallecant
    方程求根的matlab程序,用的是平行法则,仅供参考(Roots of the equation matlab program, using a parallel rule, for reference only)
    2011-09-27 10:41:43下载
    积分:1
  • hadamard
    压缩感知源代码,观测矩阵采用哈达吗变换。很好的入门代码(Compressed sensing the source code, you transform observation matrix using Hada. Good entry code)
    2014-01-08 10:05:02下载
    积分:1
  • monituih
    用模拟退火算法解决0-1问题,能运行,效果好(0-1 with a simulated annealing algorithm to solve the problem to run)
    2010-12-06 16:37:04下载
    积分:1
  • kalman11
    Kalman滤波程序,在一维的数据上,观看滤波后估计值与预测值之间的差距。(Kalman filtering)
    2013-08-03 10:48:09下载
    积分:1
  • hht
    希尔伯特黄变换理论及其应用探讨,基本原理,EMS算法(Hilbert-Huang Transform and Its Applications, basic principles, EMS algorithm)
    2010-06-03 15:54:11下载
    积分:1
  • DP_UC
    solving unit commitment by dynamic programming
    2013-07-12 18:22:35下载
    积分:1
  • ProjectList
    this is not a sparta. this is matlab codes
    2012-08-02 14:29:09下载
    积分:1
  • FEM_Eq2
    to solve the ordinary differential equation given as x^2 u - 2x u - 4u = x^2, 10 < x < 20 u(10) = 0 and u(20) = 100 using 10 linear elements
    2010-10-28 18:50:14下载
    积分:1
  • anp
    NP是美国匹兹堡大学的T.L.Saaty 教授于1996年提出了一种适应非独立的递阶层次结构的决策方法,它是在网络分析法(AHP)基础上发展而形成的一种新的实用决策方法。其关键步骤有以下几个: 1 确定因素,并建立网络层和控制层模型。 2 创建比较矩阵。 3 按照指标类型针对每列进行规范化。 4 求出每个比较矩阵的最大特征值和对应的特征向量。 5 一致性检验。如果不满足,则调整相应的比较矩阵中的元素。 6 将各个特征向量单位化(归一化),组成判断矩阵。 7 将控制层的判断矩阵和网络层的判断矩阵相乘,得到加权超矩阵。 8 将加权超矩阵单位化(归一化),求其K次幂收敛时的矩阵。其中第j列就是网络层中各元素对于元素j的极限排序向量。 (NP is a professor at the University of Pittsburgh TLSaaty presented in 1996, an adaptation of non-independent Hierarchy of decision-making method, which is the analytic network process (AHP) formed on the basis of the development of a new and practical decision-making method . The key steps are the following: A determining factor, and a network layer and control layer model. 2 create a comparison matrix. For each of the three types of indicators in accordance with normalized columns. 4 find the maximum for each comparison matrix eigenvalue and the corresponding eigenvectors. 5 consistency test. If not satisfied, then the comparison to adjust the corresponding matrix elements. 6 will each feature vector units of (normalized), to determine the composition of matrix. 7 to determine the control layer and network layer to determine matrix matrix multiplication, to be weighted super-matrix. 8 of the weighted super-matrix units of (normalized), seeking the powe)
    2010-01-28 09:36:45下载
    积分:1
  • 696518资源总数
  • 106155会员总数
  • 8今日下载