登录
首页 » matlab » FFT

FFT

于 2011-12-20 发布 文件大小:1285KB
0 149
下载积分: 1 下载次数: 3

代码说明:

  FFT的说明和一些matlab 例程,希望能有所帮助(Fast Fourier Transformation under the environment of MATLAB)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • DODPCA
    说明:  两个方向的二维主成分分析matlab算法(Two directions of two-dimensional principal component analysis algorithm matlab)
    2009-08-20 11:16:48下载
    积分:1
  • ICADTU-Toolbox
    说明:  一个neural network的matlab源程序代码(a neural network to the source code Matlab)
    2006-03-08 11:11:07下载
    积分:1
  • FSK
    实现了2FSK调制的一个小程序,为进行通信类学习者提供了一个参考(Implementation of 2FSK modulation of a small program, for beginners communication provides a reference for the study)
    2012-03-21 19:28:19下载
    积分:1
  • Chapter2
    现代通信系统使用MATLAB一书中第二章,书的作者是刘树堂(Modern communication systems using MATLAB, a book chapter, book the author is LIU Shu-tang)
    2012-05-30 14:13:47下载
    积分:1
  • MATLAB-shixian-IIR
    用matlab来实现IIR滤波器的设计实验,提供程序代码。(Matlab to achieve IIR filter design experiments to provide the program code.)
    2012-10-10 20:13:50下载
    积分:1
  • qujianshu
    区间数计算,岩土沉降预测,matlab编程,变权重计算(Interval calculations, geotechnical settlement prediction, matlab programming, variable weight calculation)
    2014-02-25 15:43:13下载
    积分:1
  • dijalgod
    dijkstra algorithm as a shortest path finder in terms of cost very simple for the beginners
    2010-10-07 06:28:45下载
    积分:1
  • FBD
    DIN Power measurement Theory in Matlab/simulink
    2012-07-30 22:35:58下载
    积分:1
  • NPU-Mathematical-Model
    西工大 数学建模简明教程 课件 很有帮助对于学习数学建模的同学(NPU A Concise Guide to Mathematical Modeling Mathematical Modeling courseware helpful for students to learn)
    2011-11-10 08:48:10下载
    积分:1
  • Reversible_Jump_MCMC_Bayesian_Model_Selection
    This demo nstrates the use of the reversible jump MCMC algorithm for neural networks. It uses a hierarchical full Bayesian model for neural networks. This model treats the model dimension (number of neurons), model parameters, regularisation parameters and noise parameters as random variables that need to be estimated. The derivations and proof of geometric convergence are presented, in detail, in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Robust Full Bayesian Learning for Neural Networks. Technical report CUED/F-INFENG/TR 343, Cambridge University Department of Engineering, May 1999. After downloading the file, type "tar -xf rjMCMC.tar" to uncompress it. This creates the directory rjMCMC containing the required m files. Go to this directory, load matlab5 and type "rjdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters. (This demo nstrates the use of the reversible jump MCMC algorithm for neural networks. It uses a hierarchical full Bayesian model for neural networks. This model treats the model dimension (number of neurons), model parameters, regularisation parameters and noise parameters as random variables that need to be estimated. The derivations and proof of geometric convergence are presented, in detail, in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Robust Full Bayesian Learning for Neural Networks. Technical report CUED/F-INFENG/TR 343, Cambridge University Department of Engineering, May 1999. After downloading the file, type "tar-xf rjMCMC.tar" to uncompress it. This creates the directory rjMCMC containing the required m files. Go to this directory, load matlab5 and type "rjdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters. )
    2008-03-07 23:23:12下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载