登录
首页 » matlab » fmcw-matlab-code

fmcw-matlab-code

于 2015-03-02 发布 文件大小:4KB
0 239
下载积分: 1 下载次数: 50

代码说明:

  利用STFT可以估计信号在每片短时窗内的频率得到信号的瞬时频率,该曲线由一组时间和频率相对应的点组成,反映了信号频率随时间的变化。(Using STFT can estimate the frequency of the signal in every piece of short-time window get signal instantaneous frequency, the curve consists of a set of time and frequency of corresponding points, reflects the signal frequency changes over time. )

文件列表:

fmcw.m,19968,2015-03-02

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • guangyiArnold
    对灰度图像采用Arnold混沌加密,实现图像置乱加密(By Arnold on the gray image encryption, encryption of image scrambling)
    2010-10-15 11:47:05下载
    积分:1
  • all-emd
    完备工具包,在原工具包中添加了io.m/extr.m,instfreq.m(Complete toolkit, in the original kit added io.m/extr.m, instfreq.m)
    2008-06-25 08:23:28下载
    积分:1
  • QAM
    4位QAM数字调制解调和16位QAM数字调制解调的matlab实现(4 QAM digital modulation and demodulation, and 16 QAM digital modulation and demodulation matlab realization)
    2015-03-23 20:41:44下载
    积分:1
  • norm_Optimal-ILC
    范数优化迭代学习代码,可以运行,效果非常好(norm-optimal iterative learning control)
    2020-09-03 15:58:06下载
    积分:1
  • Q-learning
    说明:  强化学习Qlearning简单演示。。。。。。(Reinforced learning Qlearning simple demo)
    2019-03-31 11:21:21下载
    积分:1
  • MMSE
    说明:  最小局方误差的语音增强方法,MMSE的最原始应用方法,比较经典的哦入门算法(Minimum error of the Bureau of speech enhancement, MMSE application of the most primitive methods, comparing the classic Introduction to Algorithms oh)
    2010-04-14 15:20:20下载
    积分:1
  • 2dmatlab
    matlab 2维牛顿法解方程组 计算方法(matlab 2-dimensional Newton' s method for solving equations calculated)
    2011-11-14 22:32:25下载
    积分:1
  • ARDUINO-Ndef-dev
    NFC NDEF Arduino source and example
    2013-11-10 09:14:52下载
    积分:1
  • Fenomeno-de-gibbs
    Program to calculate the impulse response of ideal filters that illustrate the gibbs fenomenon.designing filters by windowing method and seing impulse and frecuency respons of filters and checking response by incresing the number of elementos fenomenon of gibbs.
    2013-10-02 05:05:26下载
    积分:1
  • fig3_5
    when SNR is high , 1st sample estimator provides good estimate of A. it has no noise effect . so we don’t need averaging effect to reduce noise when SNR is high. However variance is still low in sample mean estimator which shows that in reality ,sample mean is good estimator than 1st sample estimator. So, for high SNR, we do not need to reduce the effect of noise by averaging. or we can say that for high SNR let say >1000 , 1st sample estimator got reduced noise. But as for as variance is concerned , the sample mean has low variance for high SNR as well.
    2013-05-02 02:45:33下载
    积分:1
  • 696518资源总数
  • 106155会员总数
  • 8今日下载