-
mul
实现有限域中乘法,输入二个普通二级制数,输出在本原多项式的乘法结果(Achieve limited multiplication field, enter the number of two-tier system of two ordinary output in primitive polynomial multiplication results)
- 2014-01-12 22:52:38下载
- 积分:1
-
FullBNT
贝叶斯matlab程序算法,给出了大量练习数据和实验方法以及结果分析。(Bayesian algorithm matlab procedures are given a great deal of practice data and experimental methods and results analysis.)
- 2021-03-31 13:39:09下载
- 积分:1
-
esmd4matlab_1.0
非极点对称的经验模态分解matlab计算程序(Non - pole symmetry empirical mode decomposition matlab calculation program)
- 2017-09-26 10:23:53下载
- 积分:1
-
ExprEvalp28Morep29
算符优先的计算器,用于编译原理的课程作业(caculator for opp)
- 2020-07-01 20:40:02下载
- 积分:1
-
element-rigid-matrix
单元刚度矩阵,用于计算三单元刚度矩阵,输出刚度矩阵(Element stiffness matrix is used to calculate the three-element stiffness matrix, the output stiffness matrix)
- 2012-06-12 17:18:33下载
- 积分:1
-
vibration-control
振动控制理论 三自由度系统地震激励下 主动控制和半主动控制以及无控制系统的响应( vibration control )
- 2013-03-15 14:04:28下载
- 积分:1
-
kpca
KPCA是一种非线性的盲源分离方法,很好用,推荐大家下载!(KPCA is a nonlinear blind source separation methods, very good, and recommend everyone to download!)
- 2020-12-03 14:29:25下载
- 积分:1
-
SpaRSA
SpaRSA算法作为解决凸优化问题的重要方法,在压缩感知等领域具有重要应用,这篇文章是SpaRSA算法的原始文章,学习这篇文章就可以进行SpaRSA算法程序的编写了。(SpaRSA algorithm to solve convex optimization problems as an important method in the field of compressed sensing and other important applications, this article is SpaRSA algorithm original articles, learning this article can be carried SpaRSA algorithm procedures for the preparation of.)
- 2013-10-24 20:10:00下载
- 积分:1
-
SVD
% 奇异值分解 (sigular value decomposition,SVD) 是另一种正交矩阵分解法;SVD是最可靠的分解法,
% 但是它比QR 分解法要花上近十倍的计算时间。[U,S,V]=svd(A),其中U和V代表二个相互正交矩阵,
% 而S代表一对角矩阵。 和QR分解法相同者, 原矩阵A不必为正方矩阵。
% 使用SVD分解法的用途是解最小平方误差法和数据压缩。用svd分解法解线性方程组,在Quke2中就用这个来计算图形信息,性能相当的好。在计算线性方程组时,一些不能分解的矩阵或者严重病态矩阵的线性方程都能很好的得到解( Singular value decomposition (sigular value decomposition, SVD) is another orthogonal matrix decomposition method SVD decomposition is the most reliable method, but it takes more than QR decomposition near ten times the computing time. [U, S, V] = svd (A), in which U and V on behalf of two mutually orthogonal matrix, and the S on behalf of a diagonal matrix. And QR decomposition are the same, the original matrix A is no need for the square matrix. The use of SVD decomposition method are used as a solution of least squares error method and data compression. Using SVD decomposition solution of linear equations, in Quke2 on to use this information to calculate the graphics performance quite good. In the calculation of linear equations, some indecomposable matrix or serious pathological matrix of linear equations can be a very good solution)
- 2020-12-21 10:29:08下载
- 积分:1
-
perturbation-methods
经典的微扰法,包括各种各样的非线性动力学理论的研究方法及其基本原理(Classical perturbation method, including all kinds of nonlinear dynamics theory research methods and its basic principle)
- 2021-03-31 10:09:09下载
- 积分:1