登录
首页 » matlab » fusion3smooth

fusion3smooth

于 2013-05-14 发布 文件大小:38KB
0 199
下载积分: 1 下载次数: 86

代码说明:

  卡尔曼平滑,包括固定区间平滑,固定点平滑和之后平滑(Kalman smoothing, including fixed-interval smoother, fixed-point smoothing and after smoothing)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Desktop
    图像的反转,灰度线性变换,非线性变换,直方图均衡化,中值滤波,梯度算子检测边缘等,,(The reversal of the image, the gray linear transformation and non-linear transformation, histogram equalization, median filtering, edge detection and so on, the gradient operator, )
    2014-12-17 10:34:07下载
    积分:1
  • Fractional_p
    Oustaloup approximation for FOC
    2020-07-03 18:20:01下载
    积分:1
  • IEEE
    IEEE802.16源程序,所有源程序均已证明可以运行(IEEE802.16 source, all source code have been shown to run)
    2009-06-01 21:55:18下载
    积分:1
  • COOFDM
    一个相干光OFDM系统范例,其中包括频偏补偿、信道估计即色散补偿、相差估计、误码率计算等等。(A coherent optical OFDM system paradigm, including frequency offset compensation, channel estimation, namely the dispersion compensation, a phase difference estimation and error rate calculation, and so on.)
    2015-10-22 11:13:11下载
    积分:1
  • shoudiangongjizhen
    受电弓激振实验程序,如果学习相关课程的同学很有可能会用得到这个程序,很有用。(Pantograph exciting experimental procedure, if learning courses students are likely to use to get this program useful.)
    2014-11-01 23:27:17下载
    积分:1
  • LS
    OFDM系统中信道估计基于LS改进算法--基于DFT的信道估计算法实现(LS channel estimation in OFDM system based on the improved algorithm based on DFT channel estimation algorithm )
    2020-07-05 19:28:58下载
    积分:1
  • matlab_utility
    说明:  matlab实用程序,大概100个,写成txt文档(matlab utility, about 100, written in txt file)
    2009-07-30 10:11:36下载
    积分:1
  • 时域频域29个特征提取
    说明:  利用matlab提取出频域和时域信号的29个特征(Using MATLAB to extract 29 features of frequency and time domain signals)
    2020-11-21 19:39:36下载
    积分:1
  • STFT_Sample
    说明:  短时傅里叶变换的样例,时长1000,采样250,短时傅里叶变换STFT,短时傅里叶变换STFT,短时傅里叶变换STFT(Short time Fourier transform)
    2021-04-06 11:29:02下载
    积分:1
  • kmedian
    The method works as follows. 1. For a data set with dimensionality, d, compute the variance of data in each dimension (column). 2. Find the column with maximum variance call it cvmax and sort it in any order. 3. Divide the data points of cvmax into K subsets, where K is the desired number of clusters. 4. Find the median of each subset. 5. Use the corresponding data points (vectors) for each median to initialize the cluster centers.
    2013-08-10 03:45:31下载
    积分:1
  • 696518资源总数
  • 106155会员总数
  • 8今日下载