-
LTEandLTE_Advanced
近年来随着移动互联网业务和物联网业务的兴起与
发展,用户对移动宽带业务需求越来越旺盛,对移动通信
网络的接入速率和质量要求也越来越高,原有基于码分多
址(CDMA)的3G及其增强技术未来将无法满足业务发展
需要,因此3GPP及3GPP2组织自2004年开始启动长期
演进(LTE)/空口演进(AIE,后改名为超移动宽带UMB)项
目,旨在通过引入一些关键技术,如正交频分复用(OFDM)
调制技术、多入多出(MIMO)技术、混合自动重传请求
(HARQ)、全IP扁平化架构及动态带宽分配等实现网络变
革,达到以下所述的网络性能,为移动宽带多媒体业务持
续发展提供技术保障。(Abstract:To meet the needs of mobile broadband
services,LTE is being deployed and becoming ma-
tured,which includes key technologies such as
OFDM,high-order modulation,HARQ,enhanced
multi-antenna technologies,fast synchronization
technologies,scalable control channel design,adap-
tive resource allocation,interference suppression
technologies etc.Moreover,the discussion on LTE-
Advanced has started,where technologies being
considered includes aggregate multi-carrier,high-
er-order MIMO,smart relay,heterogeneous net-
work,multipoint collaboration as well as enhanced
interference management.)
- 2010-08-31 10:04:48下载
- 积分:1
-
ofdm_without_noise
ofdm without noise codes for matlab
- 2011-06-13 22:38:59下载
- 积分:1
-
matlablibsvmfiles
在matlab中调用libsvm的时候数据归一与反归一 在matlab中调用libsvm的时候数据归一与反归一(in Matlab call libsvm time data normalization and anti-normalization in Matlab emphasized libsvm used when a data normalization and anti-normalization)
- 2007-04-28 14:23:55下载
- 积分:1
-
PSO-TSP
通过matlab运用粒子群算法(PSO)解决TSP51个城市问题求解(Using particle swarm optimization algorithm (PSO) to solve the problem of solving TSP51 urban problems by Matlab)
- 2021-03-30 09:59:10下载
- 积分:1
-
Fractal-image-coding
说明: 描述分形编码和解码原理的非常好的一份电子文档,对实验结果也进行了详细的分析(Describe the principles of fractal coding and decoding an electronic document very well the experimental results carried out a detailed analysis of)
- 2011-03-28 16:40:47下载
- 积分:1
-
xiaobobao
小波包的分层和提取特征,提供给大家参考,在研究小波中。(Layered and extract wavelet packet provided for your reference in the study wavelet.)
- 2015-11-06 15:41:12下载
- 积分:1
-
Motion_maglev
关于磁悬浮控制系统的建模仿真,用的是自抗扰控制方法(About levitation control system modeling and simulation, using ADRC control method)
- 2014-09-11 20:34:01下载
- 积分:1
-
rjMCMCsa
可逆跳跃马尔科夫蒙特卡洛贝叶斯模型选择,主要用于神经网络(Reversible Jump MCMC Bayesian Model Selection
This demo demonstrates the use of the reversible jump MCMC algorithm for neural networks. It uses a hierarchical full Bayesian model for neural networks. This model treats the model dimension (number of neurons), model parameters, regularisation parameters and noise parameters as random variables that need to be estimated. The derivations and proof of geometric convergence are presented, in detail, in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Robust Full Bayesian Learning for Neural Networks. Technical report CUED/F-INFENG/TR 343, Cambridge University Department of Engineering, May 1999. After downloading the file, type "tar-xf rjMCMC.tar" to uncompress it. This creates the directory rjMCMC containing the required m files. Go to this directory, load matlab5 and type "rjdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters.)
- 2013-03-11 22:29:52下载
- 积分:1
-
MMSE_CE
mimo-ofdm系统中MMSE信道估计算法(mimo-ofdm system MMSE channel estimation algorithm)
- 2013-12-04 17:06:00下载
- 积分:1
-
最优阵列汤俊译图片代码
最优阵列处理技术书中图片代码,比较详细,包含各章代码(optimum array processing)
- 2018-01-22 21:04:43下载
- 积分:1