登录
首页 » matlab » feedbacksample

feedbacksample

于 2007-07-16 发布 文件大小:71KB
0 370
下载积分: 1 下载次数: 12

代码说明:

  反馈控制系统分析与设计的有关程序和例子 涉及面广 很详细 值得参考 (Feedback Control System Analysis and Design of the procedure and covers a wide range of examples worth considering in great detail)

文件列表:

反馈控制系统分析与设计的有关程序和例子
......................................\appdx1_code.nb
......................................\c2nlsys.mdl
......................................\c4fsim.mdl
......................................\c7fsimd.mdl
......................................\dcmot.mdl
......................................\ex2_1.m
......................................\ex2_10.m
......................................\ex2_11.m
......................................\ex2_12.m
......................................\ex2_13.m
......................................\ex2_14.m
......................................\ex2_15.m
......................................\ex2_16.m
......................................\ex2_17.m
......................................\ex2_18.m
......................................\ex2_19.m
......................................\ex2_2.m
......................................\ex2_20.m
......................................\ex2_21.m
......................................\ex2_23.m
......................................\ex2_24.m
......................................\ex2_3.m
......................................\ex2_4.m
......................................\ex2_5.m
......................................\ex2_6.m
......................................\ex2_7.m
......................................\ex2_8.m
......................................\ex2_9.m
......................................\ex3_1.m
......................................\ex3_10.m
......................................\ex3_11.m
......................................\ex3_12.m
......................................\ex3_13.m
......................................\ex3_14.m
......................................\ex3_15.m
......................................\ex3_16.m
......................................\ex3_17.m
......................................\ex3_18.m
......................................\ex3_19.m
......................................\ex3_2.m
......................................\ex3_20.m
......................................\ex3_21.m
......................................\ex3_22.m
......................................\ex3_23.m
......................................\ex3_24.m
......................................\ex3_3.m
......................................\ex3_4.m
......................................\ex3_5.m
......................................\ex3_7.m
......................................\ex3_8.m
......................................\ex3_9.m
......................................\ex4_1.m
......................................\ex4_10.m
......................................\ex4_11.m
......................................\ex4_12.m
......................................\ex4_13.m
......................................\ex4_14.m
......................................\ex4_15.m
......................................\ex4_16.m
......................................\ex4_17.m
......................................\ex4_18.m
......................................\ex4_19.m
......................................\ex4_2.m
......................................\ex4_20.m
......................................\ex4_21.m
......................................\ex4_23.m
......................................\ex4_24.m
......................................\ex4_3.m
......................................\ex4_4.m
......................................\ex4_5.m
......................................\ex4_6.m
......................................\ex4_7.m
......................................\ex4_8.m
......................................\ex4_9.m
......................................\ex5_1.m
......................................\ex5_10.m
......................................\ex5_11.m
......................................\ex5_12.m
......................................\ex5_13.m
......................................\ex5_14.m
......................................\ex5_15.m
......................................\ex5_16.m
......................................\ex5_17.m
......................................\ex5_18.m
......................................\ex5_19.m
......................................\ex5_2.m
......................................\ex5_20.m
......................................\ex5_21.m
......................................\ex5_22.m
......................................\ex5_23.m
......................................\ex5_24.m
......................................\ex5_25.m
......................................\ex5_26.m
......................................\ex5_27.m
......................................\ex5_3.m
......................................\ex5_4.m
......................................\ex5_5.m
......................................\ex5_6.m
......................................\ex5_7.m

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Blob
    blob detection, measurement and filtering in image segmentation
    2011-07-19 14:13:58下载
    积分:1
  • Boost-converter
    This simulation file is about capacitor clamped converter. enjoy it
    2014-08-10 13:18:26下载
    积分:1
  • entropy-based-immune-algorithm
    在matlab环境下开发的基于熵的免疫算法。希望对大家有所帮助!(Developed in the matlab environment entropy-based immune algorithm. We want to help!)
    2011-10-28 16:38:17下载
    积分:1
  • SVM-image-classification
    实现了 SVM 在医学图像分类中的应用,通过医学图像的实验结果验证了该方法的有效性。 对 SVM 算法进行了深入研究,结合量子行为的粒子群算法的优点,提出了一种量子行为的粒子群算法和 SVM 结合的混合分类模型,应用于医学图像的分类中。 深入研究了 K-means 算法,结合了无监督聚类和监督分类方法的优点,提出了一种 K-means 和 SVM 结合的混合分类模型,并应用于医学图像的分类中。 利用粒子群和量子行为的粒子群算法对 K-means 算法进行了改进,并将改进的K-means 算法与 SVM 算法结合形成全自动分类模型,并且把它应用于医学图像的分类中。 (SVM in the classification of medical image applications, medical images through the experimental results verify the effectiveness of the method. SVM algorithm conducted in-depth research, combined with the quantum behavior of the advantages of particle swarm optimization, PSO and SVM combined behavior of a quantum mixed classification model, applied to medical image classification. In-depth study of the K-means algorithm combines the advantages of unsupervised clustering and supervised classification method, propose a hybrid combination of a K-means and SVM classification model, and applied to the classification of medical images. Improved particle swarm algorithm using particle swarm and quantum behavior of the K-means algorithm, and improved K-means algorithm and SVM algorithm combined with the formation of a fully automatic classification model, and apply it to medical image classification.)
    2013-04-04 21:52:13下载
    积分:1
  • matlabpratical
    matlab program for very useful to practical
    2010-08-31 13:13:46下载
    积分:1
  • MMmpc
    多模型预测控制;用于各种强非线性模型的预测控制。(Multi-model predictive control predictive control for a variety of strong nonlinear model.)
    2020-10-23 14:07:23下载
    积分:1
  • MIMO-OFDM
    MIMO-OFDM 信道的自适应仿真程序(MIMO-OFDM channel adaptive simulation program)
    2009-03-14 12:52:15下载
    积分:1
  • allmatlab
    说明:  matlab使用基础,MATLAB数据可视化显示与图形处理,MATLAB数值分析(use Matlab based MATLAB data visualization display and graphics processing, numerical analysis of MATLAB)
    2006-04-05 01:18:10下载
    积分:1
  • coupling_coefficients
    切比雪夫低通原型滤波器的设计元件值的提取和耦合系数的计算。并且给出S21和S11的响应曲线图(Chebyshev low-pass extraction and coupling coefficients calculated prototype filter design element values. S21 and S11, and gives the response graph)
    2014-09-22 09:42:30下载
    积分:1
  • tulusuanfa
    图论算法,里边的内容包括最短路径,最小生成树,最大流,遍历的算法及详细讲解。(Graph algorithms, including inside the shortest path, minimum spanning tree, maximum flow, traversal algorithms and detailed explanation.)
    2013-08-27 22:07:51下载
    积分:1
  • 696518资源总数
  • 106155会员总数
  • 8今日下载