登录
首页 » matlab » the-fifth-chapter

the-fifth-chapter

于 2013-05-18 发布 文件大小:1KB
0 121
下载积分: 1 下载次数: 2

代码说明:

  《模式识别与智能计算》部分函数的源程序第五章(Part of the function of the source of Pattern Recognition and Intelligent Computing)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论


0 个回复

  • wjpjvchd
    包括主成分分析、因子分析、贝叶斯分析,计算多重分形非趋势波动分析,D-S证据理论数据融合,MIMO OFDM matlab仿真,应用小区域方差对比,程序简单,基于SVPWM的三电平逆变的matlab仿真。( Including principal component analysis, factor analysis, Bayesian analysis, Calculate the multifractal trend fluctuation analysis, D-S evidence theory data fusion, MIMO OFDM matlab simulation, Application of small area variance comparison, simple procedures, Based on SVPWM three-level inverter matlab simulation.)
    2016-04-05 23:52:39下载
    积分:1
  • circle
    draws and plot acircle
    2010-12-03 21:16:34下载
    积分:1
  • MATLAB01
    matlab的基础知识ppt,适合初学者,希望大家好好学习(matlab basics ppt, for beginners, I hope you learn)
    2013-03-06 14:02:21下载
    积分:1
  • bid-openrecon-73073141ad05
    CT图像重建,包含经典的FBP,SART以及TV类算法。(CT imagge reconstruction)
    2020-11-11 11:29:44下载
    积分:1
  • Series-Fourier
    GUI Fourier series representation
    2014-11-20 07:27:19下载
    积分:1
  • MATLAB
    matlab编写的基本图像处理程序,对图像处理初学者有很大帮助。(matlab prepared the basic image processing program for image processing are very helpful for beginners.)
    2015-03-25 18:03:10下载
    积分:1
  • fit_2D_data
    Fit 2D unwrapping method
    2012-04-11 18:22:42下载
    积分:1
  • 1807.01622
    深度神经网络在函数近似中表现优越,然而需要从头开始训练。另一方面,贝叶斯方法,像高斯过程(GPs),可以利用利用先验知识在测试阶段进行快速推理。然而,高斯过程的计算量很大,也很难设计出合适的先验。本篇论文中我们提出了一种神经模型,条件神经过程(CNPs),可以结合这两者的优点。CNPs受灵活的随机过程的启发,比如GPs,但是结构是神经网络,并且通过梯度下降训练。CNPs通过很少的数据训练后就可以进行准确的预测,然后扩展到复杂函数和大数据集。我们证明了这个方法在一些典型的机器学习任务上面的的表现和功能,比如回归,分类和图像补全(Deep neural networks perform well in function approximation, but they need to be trained from scratch. On the other hand, Bayesian methods, such as Gauss Process (GPs), can make use of prior knowledge to conduct rapid reasoning in the testing stage. However, the calculation of Gauss process is very heavy, and it is difficult to design a suitable priori. In this paper, we propose a neural model, conditional neural processes (CNPs), which can combine the advantages of both. CNPs are inspired by flexible stochastic processes, such as GPs, but are structured as neural networks and trained by gradient descent. CNPs can predict accurately with very little data training, and then extend to complex functions and large data sets. We demonstrate the performance and functions of this method on some typical machine learning tasks, such as regression, classification and image completion.)
    2020-06-23 22:20:02下载
    积分:1
  • arithXover
    遗传算法中交叉算子的MATLAB程序 (Genetic algorithm crossover operator of the MATLAB program)
    2009-03-12 16:59:00下载
    积分:1
  • GradientCrossCorr
    code to get optical flow using gradient cross correlation method
    2010-11-26 06:14:35下载
    积分:1
  • 696518资源总数
  • 104847会员总数
  • 24今日下载