-
eigenfaces
说明: 基于SVD的主量提取的人脸识别的matlab源码(based on the SVD Major Face recognition from the Matlab FOSS)
- 2005-12-11 22:26:51下载
- 积分:1
-
yichuan-
说明: 神经网络处理图像的相关样本训练方法使用时可以更快的找到训练样本特征(Associated image processing neural network training method uses the sample can be found faster training sample characteristics)
- 2011-03-24 22:11:08下载
- 积分:1
-
source-code-and-book
Physical Principles of Sedimentary Basin Analysis源代码和书(Physical Principles of Sedimentary Basin Analysis)
- 2012-12-29 14:09:50下载
- 积分:1
-
CharSections
charsections warld of warcraft
- 2015-03-16 05:31:38下载
- 积分:1
-
matlabshop
基于Matlab的类photoshop的程序代码,可以直接对图像进行编辑。(Photoshop classes Matlab-based code, you can directly edit the image.)
- 2007-07-24 16:27:24下载
- 积分:1
-
Leastsquaresfitting
采用最小二乘逼近作为拟合实验数据的方法,利用F检验,确定实验数据拟合优度及最佳阶数,用编制的程序来拟合实验数据,得到了较好的结果(Least-squares fitting)
- 2009-12-08 10:59:52下载
- 积分:1
-
emd
EMD matlab实现代码,可以直接用。经验模态分解(Empirical Mode Decomposition,EMD)是由 Huang等人于1998年提出的一种针对非线性、非平稳信号的自适应信号分解算法。(Empirical Mode Decomposition (EMD) is an adaptive signal decomposition algorithm for non-linear and non-stationary signals proposed by Huang et al. in 1998.)
- 2020-06-16 12:00:01下载
- 积分:1
-
music
三维子空间music
方位角定义为与x轴的夹角,俯仰角定义为与z轴之间的夹角,俯仰角在0—90度,方位角0-180.
分辨不相关的两个角成功概率/估计偏差与SNR
最后进行谱峰搜索(Dimensional subspace music is defined as the angle and azimuth angle, pitch angle is defined as the x-axis and z-axis between the pitch angle of 0-90 degrees in azimuth 0-180 distinguish two unrelated probability of success angle/estimation error and SNR Finally peak search)
- 2015-04-12 15:29:36下载
- 积分:1
-
31500385OSTBC_OFDM
在空时分组码的MIMO-OFDM系统条件下,对信道,子载波,比特和功率进行分配,仿真结果表明,系统有良好的吞吐量性能(Space-time block codes in MIMO-OFDM system under the conditions of the channel, subcarrier, bit, and power allocation, simulation results show that the throughput of the system has good performance)
- 2011-01-09 17:20:46下载
- 积分:1
-
kernel-ica1_0.tar
The kernel-ica package is a Matlab program that implements the Kernel
ICA algorithm for independent component analysis (ICA). The Kernel ICA
algorithm is based on the minimization of a contrast function based on
kernel ideas. A contrast function measures the statistical dependence
between components, thus when applied to estimated components and
minimized over possible demixing matrices, components that are as
independent as possible are found.
- 2008-07-31 07:58:38下载
- 积分:1