登录
首页 » matlab » Grey-forecasting

Grey-forecasting

于 2012-02-12 发布 文件大小:1KB
0 142
下载积分: 1 下载次数: 15

代码说明:

  灰色预测代码用于根据现有数据来预测未来一段时间的数据(Grey prediction according to existing code is used to data to predict the future a period of data)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • BLDC_01
    brushless direct current motor
    2010-09-10 20:18:25下载
    积分:1
  • matlab
    lpf实现,可以用于matlab仿真中,将此代码放到matlab工作目录下方可使用(the lpf )
    2009-05-03 08:58:55下载
    积分:1
  • P_PER
    说明:  谱估计里的周期图仿真程序,用MATLAB(Spectral estimation periodogram in the simulation program, using MATLAB)
    2008-09-03 20:53:42下载
    积分:1
  • IEEE14-nodes
    基于IEEE14节点的matlab潮流计算程序(Flow calculation procedures based on the the IEEE14 nodes matlab)
    2012-10-04 14:58:21下载
    积分:1
  • ruan zhu
    说明:  一个用DBN做时间序列预测的实例,内包括了数据(An example of using DBN to predict time series includes data)
    2020-07-09 18:10:41下载
    积分:1
  • phplot
    a matlab program to find phase of an input signal
    2011-10-30 14:47:27下载
    积分:1
  • Reversible_Jump_MCMC_Bayesian_Model_Selection
    This demo nstrates the use of the reversible jump MCMC algorithm for neural networks. It uses a hierarchical full Bayesian model for neural networks. This model treats the model dimension (number of neurons), model parameters, regularisation parameters and noise parameters as random variables that need to be estimated. The derivations and proof of geometric convergence are presented, in detail, in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Robust Full Bayesian Learning for Neural Networks. Technical report CUED/F-INFENG/TR 343, Cambridge University Department of Engineering, May 1999. After downloading the file, type "tar -xf rjMCMC.tar" to uncompress it. This creates the directory rjMCMC containing the required m files. Go to this directory, load matlab5 and type "rjdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters. (This demo nstrates the use of the reversible jump MCMC algorithm for neural networks. It uses a hierarchical full Bayesian model for neural networks. This model treats the model dimension (number of neurons), model parameters, regularisation parameters and noise parameters as random variables that need to be estimated. The derivations and proof of geometric convergence are presented, in detail, in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Robust Full Bayesian Learning for Neural Networks. Technical report CUED/F-INFENG/TR 343, Cambridge University Department of Engineering, May 1999. After downloading the file, type "tar-xf rjMCMC.tar" to uncompress it. This creates the directory rjMCMC containing the required m files. Go to this directory, load matlab5 and type "rjdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters. )
    2008-03-07 23:23:12下载
    积分:1
  • ch9_ex
    ch9例题04_龙格库塔电子运动轨迹 matlab 程序(ch9 Examples 04_ Runge- Kutta electronic trajectory Matlab procedures)
    2006-09-26 23:23:02下载
    积分:1
  • matlabastm32
    stm32 matlab 联合开发,利用simulink模块对stm32进行快速开发!
    2012-04-21 21:06:04下载
    积分:1
  • practice
    Power control for cognitive radio
    2014-09-10 18:25:22下载
    积分:1
  • 696518资源总数
  • 105661会员总数
  • 6今日下载