登录
首页 » matlab » biot_2_4_PML

biot_2_4_PML

于 2021-05-10 发布 文件大小:2KB
0 466
下载积分: 1 下载次数: 183

代码说明:

  这是一个关于双向介质瑞雷面波正演模拟的程序,其中用到了PML边界条件,程序运行效率很高,欢迎来下载(This is a two-way medium Rayleigh surface wave forward modeling program, which used a PML boundary conditions, the efficiency of the program is high, welcome to download)

文件列表:

biot_2_4_PML.m,10278,2011-12-22

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • wsn-topology
    无线传感器网络随机分布节点,形成拓扑结构(WSN deploys nodes at random and gets the topology of WSN.)
    2011-05-24 23:27:43下载
    积分:1
  • development-of-the-Min-n-family
    co finite element for continuous beam
    2013-09-27 12:07:38下载
    积分:1
  • MWC2.1
    MWC2.1飞控 arduino代码设置(MWC2.1 flight control arduino code set)
    2013-11-26 11:20:52下载
    积分:1
  • FLch3LSeg1
    二阶系统的最小二乘一次完成算法辨识程序;主要根据实验室对数据处理的程序改的(A complete second-order system least squares algorithm for identification procedures mainly based on laboratory data processing procedures reform)
    2010-12-17 15:26:56下载
    积分:1
  • finger1
    用MATLAB对指纹进行分割,二值化,特征提取以及匹配。希望对大家有用。(Using MATLAB on the fingerprint segmentation, binarization, feature extraction and matching. Hope to be useful.)
    2010-05-06 17:22:20下载
    积分:1
  • sin-cos
    Cosinor analysis uses the least squares method to fit a sine wave to a time series. Cosinor analysis is often used in the analysis of biologic time series that demonstrate predictible rhythms. This method can be used with an unequally spaced time series. Follows cosinor analysis of a time series as outlined by Nelson et al. Methods for Cosinor-Rhythmometry Chronobiologica. 1979. Please consult reference.
    2015-01-24 15:26:38下载
    积分:1
  • cosimulation-(1)
    MATLAB 基础教程,老师根据经验总结编写,十分实用(MATLAB TEACHING )
    2013-04-27 17:41:26下载
    积分:1
  • gmsk2
    gmsk的matlab实现,可直接运行,自己编写的,请高手指点(GMSK matlab to achieve the direct running, I have written, please expert advice)
    2009-01-02 18:39:08下载
    积分:1
  • featureselection
    特征选择方法,matlab实现增 l减 r法 顺序后退法 SFFS 特征选择 顺序前进法特征选择(feature selection)
    2009-11-11 12:20:09下载
    积分:1
  • gm11
    function exp85 clear all p=[0:0.1:1.1] t=[22.4570 26.6012 12.6416 5.9367 6.9265 28.2432 31.5068 37.0166 7.8947 1.0398 12.7095] net=newff([0 1],[5 1],{ tansig purelin }, traingdx , learngdm ) net.trainParam.epochs=2500 net.trainParam.goal=0.001 net.trainParam.show=50 net=train(net,p,t) r=sim(net,p) plot(p,t,p,r, * ) y=sim(net,[1.2])
    2012-04-26 12:14:11下载
    积分:1
  • 696518资源总数
  • 106227会员总数
  • 11今日下载