登录
首页 » matlab » diffrent_sidelobe

diffrent_sidelobe

于 2014-01-21 发布 文件大小:16KB
0 212
下载积分: 1 下载次数: 4

代码说明:

  均匀线列阵波束形成,使用契比雪夫等旁瓣加权方式(chebshev different sidelobe)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • polygon_contains_point_2d
    for calculating point in polygon problem
    2009-12-08 16:11:22下载
    积分:1
  • pml
    计算同轴谐振腔的一个小软件,是基础学习的不错的例子(Coaxial Resonator calculation of a small software is the foundation of learning good example! !)
    2007-05-08 20:00:15下载
    积分:1
  • FOUR_QUADRANT_3P_IM
    four quadrant induction motor
    2014-09-30 17:40:39下载
    积分:1
  • the-mathematical-modeling-algorithm
    各种最优化算法介绍,包括遗传算法、粒子群算法、模拟退火算法、人工神经网络、小波分析、动态仿真、数值模拟等(Various optimization algorithms, including genetic algorithm, particle swarm optimization, simulated annealing algorithm, artificial neural network, wavelet analysis, dynamic simulation, numerical simulation)
    2013-05-21 22:45:15下载
    积分:1
  • main
    PARAFAC Based Blind Estimation
    2020-09-26 18:37:46下载
    积分:1
  • fseries
    使用Matlab实现函数的傅里叶级数展开(Implement the function using the Matlab Fourier series expansion)
    2011-04-28 17:23:42下载
    积分:1
  • valuable-sfunction
    MATLAB中S函数编写通俗易懂,初学者适合学习。(very simple for fish,valuable sfunction)
    2012-02-07 15:31:09下载
    积分:1
  • am-and-fm
    模拟信号AM和FM调制基于simulink的仿真(AM and FM based simulink simulation)
    2016-01-31 22:32:46下载
    积分:1
  • osccalc
    说明:  在matlab中运行的用于对数据进行正交信号校正的程序(Matlab running in the data for orthogonal signal correction procedure)
    2009-08-31 15:25:38下载
    积分:1
  • rjMCMCsa
    可逆跳跃马尔科夫蒙特卡洛贝叶斯模型选择,主要用于神经网络(Reversible Jump MCMC Bayesian Model Selection This demo demonstrates the use of the reversible jump MCMC algorithm for neural networks. It uses a hierarchical full Bayesian model for neural networks. This model treats the model dimension (number of neurons), model parameters, regularisation parameters and noise parameters as random variables that need to be estimated. The derivations and proof of geometric convergence are presented, in detail, in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Robust Full Bayesian Learning for Neural Networks. Technical report CUED/F-INFENG/TR 343, Cambridge University Department of Engineering, May 1999. After downloading the file, type "tar-xf rjMCMC.tar" to uncompress it. This creates the directory rjMCMC containing the required m files. Go to this directory, load matlab5 and type "rjdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters.)
    2013-03-11 22:29:52下载
    积分:1
  • 696516资源总数
  • 106459会员总数
  • 0今日下载