-
integral
Monte-Carlo Integral
- 2015-03-20 23:13:09下载
- 积分:1
-
LASIP_BlindDeconvolution
The LASIP routines for Multiframe Blind Deconvolution are used for restoration of an image from its multiple blurred and noisy observations.
- 2010-01-08 16:05:23下载
- 积分:1
-
Fuzzy-Pid
说明: 对给定传递函数,进行模糊PID程序仿真例程,函数调用与编写(For a given transfer function, the fuzzy PID program simulation routines, function calls and written)
- 2011-03-19 10:31:54下载
- 积分:1
-
MUSIC
以前上高级信号处理的课程作业,是关于功率谱估计的MUSIC算法(Advanced signal processing on the previous course work, the power spectrum estimation on MUSIC algorithm)
- 2011-11-28 17:48:03下载
- 积分:1
-
chapter3
张德丰matlab小波分析源代码,从信号时-频联合分析引入小波变换,将信号的多分辨率分析及Mallat算法作为全书的重点,并在此基础上,进一步阐述了双正交小波多分辨率分析、小波包多分辨率分析、提升小波应用,还讲述了小波分析在奇异性检测、去噪及数据压缩中的应用。(Zhang Defeng Matlab wavelet analysis of the source code from the signal- frequency joint analysis of the introduction of wavelet transform, multi-resolution analysis of the signal and Mallat algorithm as the focus of the book, and on this basis, further elaborated biorthogonal wavelet multi-resolution analysis wavelet packet multi-resolution analysis, the lifting wavelet applications, but also about the application of wavelet analysis in the singularity detection, de-noising and data compression.)
- 2013-05-21 18:55:35下载
- 积分:1
-
TD-SCDMA_16QAMConstall
Plots Constellation difference between the ideal and TDSCDMA
- 2009-05-05 19:06:42下载
- 积分:1
-
04
说明: 《MATLAB 7.0从入门到精通》一书的配套程序——第4章的程序。(" MATLAB 7.0 from the entry to the master," a book supporting the program- Chapter 4 of the program.)
- 2012-07-08 18:27:30下载
- 积分:1
-
Enumprocess
Enumprocess (window kernel)
- 2014-10-23 13:36:51下载
- 积分:1
-
KNN
K最邻近密度估计技术是一种分类方法,不是聚类方法。
不是最优方法,实践中比较流行。
通俗但不一定易懂的规则是:
1.计算待分类数据和不同类中每一个数据的距离(欧氏或马氏)。
2.选出最小的前K数据个距离,这里用到选择排序法。
3.对比这前K个距离,找出K个数据中包含最多的是那个类的数据,即为待分类数据所在的类。(K nearest neighbor density estimation is a classification method, not a clustering method.
It is not the best method, but it is popular in practice.
Popular but not necessarily understandable rule is:
1. calculate the distance between the data to be classified and the data in each other (Euclidean or Markov).
2. select the minimum distance from the previous K data, where the choice sorting method is used.
3. compare the previous K distances to find out which K data contains the most data of that class, that is, the class to which the data to be classified is located.)
- 2020-10-23 14:37:22下载
- 积分:1
-
comparaison
this a very importantt tool to campare two couple of souds for example and can be used for a dissemblance test
- 2011-09-27 22:10:40下载
- 积分:1