-
New Folder (3)
说明: BP神经网络识别手写体数字,BP(back propagation)神经网络是1986年由Rumelhart和McClelland为首的科学家提出的概念,是一种按照误差逆向传播算法训练的多层前馈神经网络,是应用最广泛的神经网络。(Recognition of handwritten digits by BP neural network)
- 2020-04-05 23:49:54下载
- 积分:1
-
detectedges
A matlab function that is used to calculate edges of some particular image...
- 2010-07-24 17:43:58下载
- 积分:1
-
gmskModulationDemodulation
这是GMSK(高斯最小频移键控)的MATLAB仿真源程序(This is the GMSK (Gaussian Minimum Shift Keying) and MATLAB simulation source)
- 2010-08-25 21:54:56下载
- 积分:1
-
02
说明: 数学实验matlab的好程序,给matlab的初学者(Good mathematical experiment matlab program to matlab for beginners)
- 2011-03-20 19:46:23下载
- 积分:1
-
fun
PSO算法,Quantum inspired PSO for the optimization of simultaneous recurrent neural networks asMIMO learning systems(PSO algorithm,Quantum inspired PSO for the optimization of simultaneous recurrent neural networks asMIMO learning systems)
- 2013-09-17 10:18:31下载
- 积分:1
-
PracticalJXTA2
practical jxta源码,学习jxta的很好的资料!(practical jxta source, learning jxta of good information!)
- 2015-01-07 20:54:35下载
- 积分:1
-
matlab-the-source-program-and-its-in-each-chapter-
这是一本matlab学习书的原程序和对应的每一章节的视频学习资料,自学很有用,可以一边看视频一边试验。(This is a matlab program to learn the original book and the corresponding video learning materials for each chapter, self useful in watching the video side of the test.)
- 2011-01-14 16:16:51下载
- 积分:1
-
predict2
说明: 利用神经网络训练,对EEG数据进行预测,还有分类(The neural network training, prediction of the EEG data, there are categories)
- 2020-10-19 11:47:25下载
- 积分:1
-
CA-CFAR_mtkl
实现了CA-CFAR算法仿真,得到其检测门限及检测概率曲线。并使用基于蒙特卡洛仿真方法得到检测门限及检测概率曲线,与传统的CA-CFAR算法进行了比较。(CA-CFAR algorithm to achieve the simulation, its detection threshold and detection probability curve. And use the resulting Based on Monte Carlo simulation method detection threshold and detection probability curve, with the traditional CA-CFAR algorithm were compared.)
- 2021-02-22 19:39:42下载
- 积分:1
-
SLEP_package_4.1
稀疏性学习的工具包,包含说明文件和工具m文件(Sparse learning toolkit, including documentation and tools m file)
- 2012-08-08 11:47:36下载
- 积分:1