-
zhengjiaocaiyang
正交频率采样欠采样测量频率处理程序
可以对信号频率进行估计(zhengjiaocaiyang.m)
- 2010-08-13 22:46:26下载
- 积分:1
-
FCMClust
algorithme FCM code matlab type .m
- 2013-08-15 12:23:51下载
- 积分:1
-
chepaitz
对图象进行预处理并进行Hough变换,然后求图象特征向量值(Preprocessing of image and Hough transform, image characteristics and then seek to Money)
- 2007-08-22 15:45:37下载
- 积分:1
-
linearprogram
线性规划算法,来自于《精通MATLAB最优化计算》(linear program )
- 2010-01-04 11:25:18下载
- 积分:1
-
CRC32
CRC循环检测算法,CRC32的算法,可算得余数和商(CRC32 algorithm, and the remainder can be considered as business)
- 2011-06-09 11:12:23下载
- 积分:1
-
huiseyuce
里面有灰色预测模型的matlab程序,只需输入数据即可,调试成功,可运行。(There are gray prediction model matlab program, you can simply enter the data, debugging success, can be run.)
- 2013-08-27 21:45:05下载
- 积分:1
-
pso_svm
说明: 粒子群优化算法(Particle Swarm optimization,PSO)又翻译为粒子群算法、微粒群算法、或微粒群优化算法。是通过模拟鸟群觅食行为而发展起来的一种基于群体协作的随机搜索算法。通常认为它是群集智能 (Swarm intelligence, SI) 的一种。它可以被纳入多主体优化系统(Multiagent Optimization System, MAOS)。粒子群优化算法是由Eberhart博士和kennedy博士发明。(The probabilistic neural network has a simple structure and is easy to design Particle Swarm Optimization (PSO) is translated as Particle Swarm Optimization, Particle Swarm Optimization, or Particle Swarm Optimization. It is a random search algorithm based on group collaboration developed by simulating the foraging behavior of birds. It is generally considered to be a type of swarm intelligence (SI). It can be incorporated into Multiagent Optimization System (MAOS). The particle swarm optimization algorithm was invented by Dr. Eberhart and Dr. Kennedy.)
- 2020-05-28 18:02:17下载
- 积分:1
-
C701
空气分离精馏塔动态模拟,用最原始的定义精确给出空气各组分的理论含量。(Air Separation system Dynamic Simulation Program)
- 2011-05-13 21:39:18下载
- 积分:1
-
yichuansuanfa
将贪婪修复方法与遗传算法相结合,构成混和遗传算法,并求解经典背包问题。(The greedy repair method and genetic algorithm are combined to form hybrid genetic algorithm, and solve the classical knapsack problem.)
- 2010-05-31 21:50:59下载
- 积分:1
-
bipso
围绕粒子群的当前质心对粒子群重新初始化.这样,每个粒子在随后的迭代中将在新的位置带着粒子在上次搜索中获得的“运动惯性”(wvi)向Pi,Pg的方向前进,从而可以在粒子群的运动过程中获得新的位置,增加求得更优解的机会.随着迭代的继续,经过变异的粒子群又将趋向于同一点,当粒子群收敛到一定程度时又进行下一次变异,如此反复,直到迭代结束.(particle swarm around the center of mass of the current PSO reinitialization. Thus, Each particle in the next iteration will be in the new location with particles in the last search was the "inertia" (wvi ) Pi, Pg orientation, and thus can PSO course of the campaign was a new position, increase seek better solutions opportunities. With the continued iteration, after variation of PSO will tend to the same point. When PSO converge to a certain extent when the next variation, so repeatedly, until the end of iteration.)
- 2006-08-19 17:39:33下载
- 积分:1