-
ART
自适应共振神经网络可以实现自动学习与分类具有自适应的功能(adaptive resonance neural network can automatically learning and classification of adaptive function)
- 2007-07-06 17:51:38下载
- 积分:1
-
an office network, the business process
一个办公网的商业程序-ASP-an office network, the business process-ASP
- 2022-02-13 13:12:32下载
- 积分:1
-
deleted_selected_node-complexnetworks
复杂网络,删除指定节点的复杂网络模型,适用性强(Complex networks, the complexity of the deletion of the specified node network model, the application of strong)
- 2009-04-14 18:50:02下载
- 积分:1
-
MATLAB-Example
有关微动的程序,包括转动,锥动,有需要的可以下载(Fretting about the program, including rotation, moving cone, there is a need to download)
- 2021-01-17 10:58:49下载
- 积分:1
-
利用机器学习预测房价数据
说明: 利用机器学习中的的线性回归模型,完成对房价的预估(Using the linear regression model in machine learning to complete the prediction of house price)
- 2020-05-15 22:59:11下载
- 积分:1
-
SVDD
LIBSVM中的SVDD(Support vector data descriiption)算法,直接可用,可通过修改参数gamma和参数C来控制最后剩下的支撑矢量的数量。(The SVDD (Support vector data descriiption) algorithm in LIBSVM, directly available, and parameters by modifying the parameters of gamma C to control the last remaining number of support vectors.
)
- 2011-04-29 15:06:42下载
- 积分:1
-
这是一个古语软硬件信息好程序
这是一个古语软硬件信息好程序-This is a message saying the program is hardware
- 2023-05-25 03:25:03下载
- 积分:1
-
aNNNNandAIr
人工神经网络与人工智能Delphi版语言的源程序源码(Neural Neetworks and AI Delphi Sources)。
(Artificial Neural Networks and Artificial Intelligence Delphi version of the language of the source code (Neural Neetworks and AI Delphi Sources).)
- 2020-12-16 06:19:13下载
- 积分:1
-
UdpClient
在VS2010环境中,根据UDP协议通信的原理,用C++编写的基于UDP的客户端的代码。(In the VS2010 environment prepared by the UDP-based client C++ code)
- 2013-12-14 20:52:31下载
- 积分:1
-
FeatureSelection
Feature Selection using Matlab.
The DEMO includes 5 feature selection algorithms:
• Sequential Forward Selection (SFS)
• Sequential Floating Forward Selection (SFFS)
• Sequential Backward Selection (SBS)
• Sequential Floating Backward Selection (SFBS)
• ReliefF
Two CCR estimation methods:
• Cross-validation
• Resubstitution
After selecting the best feature subset, the classifier obtained can be used for classifying any pattern.
Figure: Upper panel is the pattern x feature matrix
Lower panel left are the features selected
Lower panel right is the CCR curve during feature selection steps
Right panel is the classification results of some patterns.
This software was developed using Matlab 7.5 and Windows XP.
Copyright: D. Ververidis and C.Kotropoulos
AIIA Lab, Thessaloniki, Greece,
jimver@aiia.csd.auth.gr
costas@aiia.csd.auth.gr
- 2010-11-22 15:53:24下载
- 积分:1