登录
首页 » matlab » CMA-ES

CMA-ES

于 2014-04-10 发布 文件大小:3982KB
0 173
下载积分: 1 下载次数: 79

代码说明:

  CMAES算法matlab编程学习文件夹,希望对大家有所帮助!( CMAES learning algorithm matlab program folder, we want to help!)

文件列表:

CMA-ES
......\cmaes
......\.....\cmaes-05-Nov-2013.xls,37376,2013-11-05
......\.....\cmaes.xls.xlsx,21203,2013-11-05
......\.....\cmaes_me.m,132731,2013-11-06
......\.....\cmaes_test.m,1750,2013-11-06
......\.....\covmat.m,1561,2013-11-12
......\.....\dispcmaes.m,4888,2013-10-12
......\.....\everyiter.m,173,2013-10-29
......\.....\noisemeasurement.m,5251,2013-10-04
......\.....\normal_2d.m,10851,2013-11-25
......\.....\out.mat,65692,2013-12-05
......\.....\outcmaesaxlen.dat,3619,2013-11-25
......\.....\outcmaesfit.dat,6299,2013-11-25
......\.....\outcmaesstddev.dat,2499,2013-11-25
......\.....\outcmaesxmean.dat,1988,2013-11-25
......\.....\outcmaesxrecentbest.dat,3014,2013-11-25
......\.....\PCA.m,1651,2013-11-12
......\.....\plotcmaes.fig,12980,2013-10-19
......\.....\plotcmaes.m,13403,2013-11-06
......\.....\plotcmaesdat.m,8210,2013-10-04
......\.....\plotcma_es.m,8853,2013-11-04
......\.....\PlotEllipse.m,852,2013-11-15
......\.....\plotmultiD_to_2D_N_CMAES.m,3945,2013-11-06
......\.....\popshape.m,1030,2013-11-11
......\.....\purecmaes.asv,10635,2013-11-26
......\.....\purecmaes2d.m,10805,2013-11-30
......\.....\purecmaes3d.asv,11056,2013-11-30
......\.....\purecmaes3d.m,11452,2013-11-30
......\.....\result_cmaes.mat,2451,2013-11-25
......\.....\run.mat,18186,2013-11-05
......\.....\variablescmaes.mat,52665,2013-11-25
......\.....\write2excel_cmaes.m,2457,2013-11-05
......\cmaes1
......\......\cmaes-05-Nov-2013.xls,37376,2013-11-05
......\......\cmaes.xls.xlsx,21203,2013-11-05
......\......\cmaes_me.asv,132409,2013-11-06
......\......\cmaes_me.m,132731,2013-11-06
......\......\cmaes_test.m,1750,2013-11-06
......\......\Desktop.ini,77,2013-10-04
......\......\dispcmaes.m,4888,2013-10-12
......\......\everyiter.m,173,2013-10-29
......\......\noisemeasurement.m,5251,2013-10-04
......\......\outcmaesaxlen.dat,264,2013-11-06
......\......\outcmaesfit.dat,321,2013-11-06
......\......\outcmaesstddev.dat,176,2013-11-06
......\......\outcmaesxmean.dat,181,2013-11-06
......\......\outcmaesxrecentbest.dat,175,2013-11-06
......\......\plotcmaes.fig,12980,2013-10-19
......\......\plotcmaes.m,13403,2013-11-06
......\......\plotcmaesdat.m,8210,2013-10-04
......\......\plotcma_es.m,8853,2013-11-04
......\......\plotmultiD_to_2D_N_CMAES.m,3945,2013-11-06
......\......\purecmaes.m,8853,2013-10-30
......\......\result_cmaes.mat,2452,2013-11-06
......\......\run.mat,18186,2013-11-05
......\......\variablescmaes.mat,49990,2013-11-06
......\......\write2excel_cmaes.m,2457,2013-11-05
......\cmaes_backup
......\............\cmaes.m,131996,2013-10-08
......\............\cmaes_me.m,133862,2013-10-08
......\............\cmaes_test.m,3688,2013-10-16
......\............\Desktop.ini,77,2013-10-04
......\............\dispcmaes.m,4889,2013-10-04
......\............\noisemeasurement.m,5251,2013-10-04
......\............\outcmaesaxlen.dat,6793,2013-10-16
......\............\outcmaesfit.dat,11974,2013-10-16
......\............\outcmaesstddev.dat,4689,2013-10-16
......\............\outcmaesxmean.dat,3686,2013-10-16
......\............\outcmaesxrecentbest.dat,5696,2013-10-16
......\............\plotcmaes.m,8852,2013-10-04
......\............\plotcmaesdat.m,8210,2013-10-04
......\............\plotcmaess.fig,12990,2013-10-11
......\............\plotcmaess.m,12328,2013-10-11
......\............\plotmultiD_to_2D_N_DS.m,3942,2013-10-06
......\............\purecmaes.m,8480,2013-11-25
......\............\test_cmaes.m,3395,2013-10-04
......\............\variablescmaes.mat,13815,2013-10-16
......\............\write2excel_cmaes.m,11262,2013-10-04
......\cmaes_joe
......\.........\cmaes_t.m,6762,2013-10-17
......\.........\ds.m,4991,2013-10-06
......\.........\ds_p.m,6081,2013-10-16
......\.........\plotcmaes.fig,12970,2013-10-16
......\.........\plotcmaes.m,12957,2013-10-17
......\.........\plotmultiD_to_2D_N_DS.m,3942,2013-10-06
......\.........\test_cmaes.m,1172,2013-10-17
......\.........\write2excel_cmaes.m,11248,2013-10-06
......\commonfile
......\..........\creatNcloud.asv,1035,2013-12-07
......\..........\creatNcloud.m,741,2014-01-03
......\..........\getoptposition_multi2.asv,9627,2013-10-04
......\..........\getoptposition_multi2.m,13048,2013-10-04
......\..........\get_var_cloud_3.asv,1570,2013-11-25
......\..........\get_var_cloud_3.m,1570,2013-11-25
......\..........\plotmultiD_to_2D_N.m,2434,2013-10-04
......\..........\s_function.m,49,2013-10-04
......\..........\varlimit.m,435,2013-10-04
......\conception_cmaes
......\................\conception_cmaes.m,5777,2013-10-30

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • radonLikeFeaturesDemo
    该演示中包含的代码演示如何氡相似的功能,可以用来提高(以及部分)在Connectome电磁图像单元格边界。 请举出下列文件如果您发现此代码有用: Ritwik库马尔,阿梅里奥五雷纳和Hanspeter Pfister说“氡样的特点及其应用Connectomics”,接受,IEEE计算机学会研讨会在生物医学图像分析(MMBIA)2010年数学方法 http://seas.harvard.edu/〜 rkkumar radonLikeFeaturesDemo.m:演示边缘增强用氡相似的功能, getEdgeFeatures.m:助手为高斯函数的二阶导数滤波器 makeBarFilters.m:助手为高斯函数的二阶导数滤波器 sample.png:示例图像在此演示使用(The demo included in the code demonstrates how Radon-Like Features can be used to enhance (and segment) cell boundaries in Connectome EM images. Please cite the following paper if you find this code useful: Ritwik Kumar, Amelio V. Reina & Hanspeter Pfister, “Radon-Like Features and their Application to Connectomics”, accepted, IEEE Computer Society Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA) 2010 http://seas.harvard.edu/~rkkumar radonLikeFeaturesDemo.m : Demonstrates edge enhancement using Radon-Like Features getEdgeFeatures.m : Helper function for Gaussian Second Derivative Filters makeBarFilters.m : Helper function for Gaussian Second Derivative Filters sample.png : Sample image for use in this demo )
    2010-07-05 12:09:03下载
    积分:1
  • QCEncode
    说明:  QC-LDPC编码算法的MATLAB程序实现,具有详细解释,IEEE802.16e标准(Various encoding and decoding methods of LDPC)
    2021-04-11 21:34:02下载
    积分:1
  • imageprocessing
    Image processing using MATLAB, basics..
    2010-09-23 03:26:38下载
    积分:1
  • VC++_Matlab
    许多工程软件需要用到复杂的数学算法。VC++能够形成各种用户界面, 并可以直 接与系统及底层硬件交换数据。因此研究VC++和Matlab 的混合编程具有很大的实际意义。 该文讨论了如何使用Matlab 的Complier 将*.m函数编译为动态链接库DLL, 提供给VC++ 调用的方法, 提供了一种VC++与Matlab 混合编程的快速实现。(Many engineering software necessary to use complex mathematical algorithms. VC++ Can form a variety of user interface, and can be directly related to systems and data exchange underlying hardware. The study VC++ And Matlab programming hybrid has great practical significance. The article discussed how to use the Matlab Compiler to compile*. m functions for dynamic link library DLL, available to VC++ Call methods, provides a VC++ With Matlab rapid realize mixed language programming.)
    2008-05-12 10:57:07下载
    积分:1
  • chap6
    程序代码说明 P0610:神经网络的实例(Procedure Code Description P0610: examples of neural network)
    2010-05-17 18:24:41下载
    积分:1
  • orbit
    说明:  一个关于用matlab求解转子动力学的程序,使用newMark方法(A program about solving rotor dynamics with MATLAB, using Newmark method)
    2020-05-23 23:33:35下载
    积分:1
  • MIMO-sphere-detection
    说明:  一种高效的应用于MIMO检测的球形算法。适用于N-by-N QAM 调制。(an effective MIMO system deteciton algrithom ,which is applied to N-by-N transeiver with QAM modulatuion.)
    2011-03-19 14:11:36下载
    积分:1
  • wjsclV1.2
    无惧上传类 - UpFile_Class V1.2(without fear Upload category-UpFile_Class V1.2)
    2007-05-12 23:46:18下载
    积分:1
  • mimoqam
    QAM MIMO simulation using MATLAB
    2014-02-04 00:29:59下载
    积分:1
  • svm2
    说明:  支持向量机最初用来解决模式识别问题,目的是发现泛化性能好的决策规则。然而,随着Vapnik的 不敏感损失函数的引入,支持向量机已经扩展为解决非线性回归估计问题,而且与神经网络方法相比,有着显著的优越性,被认为是人工神经网络方法的替代方法,已经成为目前机器学习领域的研究热点和焦点。(Support vector machine (SVM) was originally used to solve the problem of pattern recognition. However, with the introduction of Vapnik's insensitive loss function, support vector machine (SVM) has been extended to solve the problem of nonlinear regression estimation. Compared with neural network method, support vector machine (SVM) has obvious advantages. It is considered as an alternative method of artificial neural network method, and has become the research hotspot and focus in the field of machine learning.)
    2020-07-01 14:07:02下载
    积分:1
  • 696518资源总数
  • 105547会员总数
  • 4今日下载