登录
首页 » Java » mulan

mulan

于 2020-12-17 发布 文件大小:976KB
0 240
下载积分: 1 下载次数: 7

代码说明:

  mulan实现多标签分类,内含多个重要的分类器,乃是分类中的精华(Mulan implementation of multi label classification, containing multiple important classifier, is the essence of the classification)

文件列表:

mulan
.....\.classpath,592,2015-08-04
.....\.project,381,2015-07-17
.....\bin
.....\...\emotions.arff,380476,2012-07-26
.....\...\emotions.xml,332,2012-07-26
.....\...\mlknn
.....\...\.....\Main.class,2023,2015-08-07
.....\...\.....\NewMlknn.class,8959,2015-08-10
.....\...\mulan
.....\...\.....\classifier
.....\...\.....\..........\InvalidDataException.class,638,2015-08-04
.....\...\.....\..........\lazy
.....\...\.....\..........\....\BRkNN$ExtensionType.class,1228,2015-08-04
.....\...\.....\..........\....\BRkNN.class,9309,2015-08-04
.....\...\.....\..........\....\IBLR_ML.class,6982,2015-08-04
.....\...\.....\..........\....\MLkNN.class,6547,2015-08-04
.....\...\.....\..........\....\MultiLabelKNN.class,2697,2015-08-11
.....\...\.....\..........\LearnerException.class,625,2015-08-04
.....\...\.....\..........\meta
.....\...\.....\..........\....\ClusteringBased.class,5471,2015-08-04
.....\...\.....\..........\....\ConstrainedKMeans$bucketInstance.class,1246,2015-08-04
.....\...\.....\..........\....\ConstrainedKMeans.class,12102,2015-08-04
.....\...\.....\..........\....\EnsembleOfSubsetLearners$IdComparator.class,1425,2015-08-04
.....\...\.....\..........\....\EnsembleOfSubsetLearners$LabelSubsetsWeight.class,2024,2015-08-04
.....\...\.....\..........\....\EnsembleOfSubsetLearners$SubsetsDistance.class,1956,2015-08-04
.....\...\.....\..........\....\EnsembleOfSubsetLearners.class,19559,2015-08-04
.....\...\.....\..........\....\HierarchyBuilder$Method.class,1289,2015-08-04
.....\...\.....\..........\....\HierarchyBuilder.class,14388,2015-08-04
.....\...\.....\..........\....\HMC.class,12965,2015-08-04
.....\...\.....\..........\....\HMCNode.class,3905,2015-08-04
.....\...\.....\..........\....\HOMER.class,6047,2015-08-04
.....\...\.....\..........\....\MultiLabelMetaLearner.class,783,2015-08-04
.....\...\.....\..........\....\RAkEL.class,7688,2015-08-04
.....\...\.....\..........\....\RAkELd.class,7078,2015-08-04
.....\...\.....\..........\....\SubsetLearner.class,14140,2015-08-04
.....\...\.....\..........\....\thresholding
.....\...\.....\..........\....\............\ExampleBasedFMeasureOptimizer.class,4345,2015-08-04
.....\...\.....\..........\....\............\Meta.class,6343,2015-08-04
.....\...\.....\..........\....\............\MetaLabeler.class,8911,2015-08-04
.....\...\.....\..........\....\............\MLPTO.class,7206,2015-08-04
.....\...\.....\..........\....\............\OneThreshold.class,8163,2015-08-04
.....\...\.....\..........\....\............\RCut.class,7500,2015-08-04
.....\...\.....\..........\....\............\SCut.class,8253,2015-08-04
.....\...\.....\..........\....\............\ThresholdPrediction.class,7430,2015-08-04
.....\...\.....\..........\ModelInitializationException.class,662,2015-08-04
.....\...\.....\..........\MultiLabelLearner.class,553,2015-08-04
.....\...\.....\..........\MultiLabelLearnerBase.class,2826,2015-08-04
.....\...\.....\..........\MultiLabelOutput.class,3841,2015-08-04
.....\...\.....\..........\neural
.....\...\.....\..........\......\BPMLL.class,13580,2015-08-04
.....\...\.....\..........\......\BPMLLAlgorithm.class,7512,2015-08-04
.....\...\.....\..........\......\DataPair.class,3092,2015-08-04
.....\...\.....\..........\......\MMPLearner.class,11988,2015-08-04
.....\...\.....\..........\......\MMPMaxUpdateRule.class,1471,2015-08-04
.....\...\.....\..........\......\MMPRandomizedUpdateRule.class,2979,2015-08-04
.....\...\.....\..........\......\MMPUniformUpdateRule.class,2257,2015-08-04
.....\...\.....\..........\......\MMPUpdateRuleBase.class,2674,2015-08-04
.....\...\.....\..........\......\MMPUpdateRuleType.class,1186,2015-08-04
.....\...\.....\..........\......\model
.....\...\.....\..........\......\.....\ActivationFunction.class,454,2015-08-04
.....\...\.....\..........\......\.....\ActivationLinear.class,924,2015-08-04
.....\...\.....\..........\......\.....\ActivationTANH.class,921,2015-08-04
.....\...\.....\..........\......\.....\BasicNeuralNet.class,4840,2015-08-04
.....\...\.....\..........\......\.....\NeuralNet.class,421,2015-08-04
.....\...\.....\..........\......\.....\Neuron.class,5100,2015-08-04
.....\...\.....\..........\......\ModelUpdateRule.class,321,2015-08-04
.....\...\.....\..........\......\NormalizationFilter.class,3682,2015-08-04
.....\...\.....\..........\......\ThresholdFunction.class,2833,2015-08-04
.....\...\.....\..........\transformation
.....\...\.....\..........\..............\AdaBoostMH.class,1851,2015-08-04
.....\...\.....\..........\..............\BinaryRelevance.class,3519,2015-08-04
.....\...\.....\..........\..............\CalibratedLabelRanking.class,10108,2015-08-04
.....\...\.....\..........\..............\ClassifierChain.class,5590,2015-08-04
.....\...\.....\..........\..............\EnsembleOfClassifierChains.class,6300,2015-08-04
.....\...\.....\..........\..............\EnsembleOfPrunedSets.class,5592,2015-08-04
.....\...\.....\..........\..............\IncludeLabelsClassifier.class,2715,2015-08-04
.....\...\.....\..........\..............\LabelPowerset.class,5025,2015-08-04
.....\...\.....\..........\..............\LabelsetPruning.class,3834,2015-08-04
.....\...\.....\..........\..............\MultiClassLearner.class,2215,2015-08-04
.....\...\.....\..........\..............\MultiLabelStacking.class,16409,2015-08-04
.....\...\.....\..........\..............\PPT$Strategy.class,1219,2015-08-04
.....\...\.....\..........\..............\PPT.class,5943,2015-08-04
.....\...\.....\..........\..............\PrunedSets$Strategy.class,1242,2015-08-04
.....\...\.....\..........\..............\PrunedSets.class,6820,2015-08-04
.....\...\.....\..........\..............\TransformationBasedMultiLabelLearner.class,2291,2015-08-04
.....\...\.....\core
.....\...\.....\....\ArgumentNullException.class,1216,2015-08-04
.....\...\.....\....\MulanException.class,594,2015-08-04
.....\...\.....\....\MulanJavadoc.class,3615,2015-08-04
.....\...\.....\....\MulanRuntimeException.class,622,2015-08-04
.....\...\.....\....\Util.class,1104,2015-08-04
.....\...\.....\....\WekaException.class,604,2015-08-04
.....\...\.....\data
.....\...\.....\....\ConditionalDependenceIdentifier.class,8602,2015-08-04
.....\...\.....\....\ConverterCLUS.class,5825,2015-08-04
.....\...\.....\....\ConverterLibSVM.class,6687,2015-08-04
.....\...\.....\....\DataLoadException.class,616,2015-08-04
.....\...\.....\....\DataUtils.class,1281,2015-08-04
.....\...\.....\....\GreedyLabelClustering.class,8137,2015-08-04

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • ARmodel
    AR模形拟合工具,提供AR模型的拟合与模拟(AR model )
    2009-12-15 11:23:57下载
    积分:1
  • experiment6
    对图像进行在频域的变换,例如使相位为0,使幅值为0等(The image transform in the frequency domain, such as phase 0, the amplitude is 0)
    2012-05-31 22:55:12下载
    积分:1
  • real_analyze
    matlab实例分析一个Matlab实现的实分析程序(real analysis)
    2010-07-01 20:51:00下载
    积分:1
  • mode000
    PWM整流器的直接电流控制,采用双闭环控制,调试通过,效果一般(PWM rectifier direct current control, dual-closed-loop control, debug is passed, the effect of general)
    2008-08-15 15:55:50下载
    积分:1
  • rls.m
    It s a matlab code for rls (recursive least squares) algorithm.
    2013-03-10 12:08:42下载
    积分:1
  • MATLAB_nonlinear_numerical_algorithm_source_code
    MATLAB的非线性数值算法源代码MATLAB nonlinear numerical algorithm source code(MATLAB' s nonlinear numerical algorithm source code MATLAB nonlinear numerical algorithm source code)
    2010-08-02 10:56:52下载
    积分:1
  • PCA
    自己写的PCA降维算法,还有模糊k均值大家可以参考一下(Write their own PCA dimensionality reduction algorithm, and fuzzy k means we can refer to)
    2010-12-31 11:09:34下载
    积分:1
  • fanjie
    并联机器人运动学计算,包括各个支腿的位移变化,速度变化,加速度变化曲线(Kinematics calculations, including the displacement of each leg, speed change, acceleration curve)
    2013-09-16 10:28:13下载
    积分:1
  • subplot
    对不同区域进行断面分析,并让图片生成在一张图上(Cross-section analysis for different areas and let the picture generated a map)
    2013-12-20 15:23:17下载
    积分:1
  • 0849300967.pdf
    Finite element method using Matlab
    2013-11-07 10:56:37下载
    积分:1
  • 696518资源总数
  • 106222会员总数
  • 14今日下载