登录
首页 » Java » mulan

mulan

于 2020-12-17 发布 文件大小:976KB
0 220
下载积分: 1 下载次数: 7

代码说明:

  mulan实现多标签分类,内含多个重要的分类器,乃是分类中的精华(Mulan implementation of multi label classification, containing multiple important classifier, is the essence of the classification)

文件列表:

mulan
.....\.classpath,592,2015-08-04
.....\.project,381,2015-07-17
.....\bin
.....\...\emotions.arff,380476,2012-07-26
.....\...\emotions.xml,332,2012-07-26
.....\...\mlknn
.....\...\.....\Main.class,2023,2015-08-07
.....\...\.....\NewMlknn.class,8959,2015-08-10
.....\...\mulan
.....\...\.....\classifier
.....\...\.....\..........\InvalidDataException.class,638,2015-08-04
.....\...\.....\..........\lazy
.....\...\.....\..........\....\BRkNN$ExtensionType.class,1228,2015-08-04
.....\...\.....\..........\....\BRkNN.class,9309,2015-08-04
.....\...\.....\..........\....\IBLR_ML.class,6982,2015-08-04
.....\...\.....\..........\....\MLkNN.class,6547,2015-08-04
.....\...\.....\..........\....\MultiLabelKNN.class,2697,2015-08-11
.....\...\.....\..........\LearnerException.class,625,2015-08-04
.....\...\.....\..........\meta
.....\...\.....\..........\....\ClusteringBased.class,5471,2015-08-04
.....\...\.....\..........\....\ConstrainedKMeans$bucketInstance.class,1246,2015-08-04
.....\...\.....\..........\....\ConstrainedKMeans.class,12102,2015-08-04
.....\...\.....\..........\....\EnsembleOfSubsetLearners$IdComparator.class,1425,2015-08-04
.....\...\.....\..........\....\EnsembleOfSubsetLearners$LabelSubsetsWeight.class,2024,2015-08-04
.....\...\.....\..........\....\EnsembleOfSubsetLearners$SubsetsDistance.class,1956,2015-08-04
.....\...\.....\..........\....\EnsembleOfSubsetLearners.class,19559,2015-08-04
.....\...\.....\..........\....\HierarchyBuilder$Method.class,1289,2015-08-04
.....\...\.....\..........\....\HierarchyBuilder.class,14388,2015-08-04
.....\...\.....\..........\....\HMC.class,12965,2015-08-04
.....\...\.....\..........\....\HMCNode.class,3905,2015-08-04
.....\...\.....\..........\....\HOMER.class,6047,2015-08-04
.....\...\.....\..........\....\MultiLabelMetaLearner.class,783,2015-08-04
.....\...\.....\..........\....\RAkEL.class,7688,2015-08-04
.....\...\.....\..........\....\RAkELd.class,7078,2015-08-04
.....\...\.....\..........\....\SubsetLearner.class,14140,2015-08-04
.....\...\.....\..........\....\thresholding
.....\...\.....\..........\....\............\ExampleBasedFMeasureOptimizer.class,4345,2015-08-04
.....\...\.....\..........\....\............\Meta.class,6343,2015-08-04
.....\...\.....\..........\....\............\MetaLabeler.class,8911,2015-08-04
.....\...\.....\..........\....\............\MLPTO.class,7206,2015-08-04
.....\...\.....\..........\....\............\OneThreshold.class,8163,2015-08-04
.....\...\.....\..........\....\............\RCut.class,7500,2015-08-04
.....\...\.....\..........\....\............\SCut.class,8253,2015-08-04
.....\...\.....\..........\....\............\ThresholdPrediction.class,7430,2015-08-04
.....\...\.....\..........\ModelInitializationException.class,662,2015-08-04
.....\...\.....\..........\MultiLabelLearner.class,553,2015-08-04
.....\...\.....\..........\MultiLabelLearnerBase.class,2826,2015-08-04
.....\...\.....\..........\MultiLabelOutput.class,3841,2015-08-04
.....\...\.....\..........\neural
.....\...\.....\..........\......\BPMLL.class,13580,2015-08-04
.....\...\.....\..........\......\BPMLLAlgorithm.class,7512,2015-08-04
.....\...\.....\..........\......\DataPair.class,3092,2015-08-04
.....\...\.....\..........\......\MMPLearner.class,11988,2015-08-04
.....\...\.....\..........\......\MMPMaxUpdateRule.class,1471,2015-08-04
.....\...\.....\..........\......\MMPRandomizedUpdateRule.class,2979,2015-08-04
.....\...\.....\..........\......\MMPUniformUpdateRule.class,2257,2015-08-04
.....\...\.....\..........\......\MMPUpdateRuleBase.class,2674,2015-08-04
.....\...\.....\..........\......\MMPUpdateRuleType.class,1186,2015-08-04
.....\...\.....\..........\......\model
.....\...\.....\..........\......\.....\ActivationFunction.class,454,2015-08-04
.....\...\.....\..........\......\.....\ActivationLinear.class,924,2015-08-04
.....\...\.....\..........\......\.....\ActivationTANH.class,921,2015-08-04
.....\...\.....\..........\......\.....\BasicNeuralNet.class,4840,2015-08-04
.....\...\.....\..........\......\.....\NeuralNet.class,421,2015-08-04
.....\...\.....\..........\......\.....\Neuron.class,5100,2015-08-04
.....\...\.....\..........\......\ModelUpdateRule.class,321,2015-08-04
.....\...\.....\..........\......\NormalizationFilter.class,3682,2015-08-04
.....\...\.....\..........\......\ThresholdFunction.class,2833,2015-08-04
.....\...\.....\..........\transformation
.....\...\.....\..........\..............\AdaBoostMH.class,1851,2015-08-04
.....\...\.....\..........\..............\BinaryRelevance.class,3519,2015-08-04
.....\...\.....\..........\..............\CalibratedLabelRanking.class,10108,2015-08-04
.....\...\.....\..........\..............\ClassifierChain.class,5590,2015-08-04
.....\...\.....\..........\..............\EnsembleOfClassifierChains.class,6300,2015-08-04
.....\...\.....\..........\..............\EnsembleOfPrunedSets.class,5592,2015-08-04
.....\...\.....\..........\..............\IncludeLabelsClassifier.class,2715,2015-08-04
.....\...\.....\..........\..............\LabelPowerset.class,5025,2015-08-04
.....\...\.....\..........\..............\LabelsetPruning.class,3834,2015-08-04
.....\...\.....\..........\..............\MultiClassLearner.class,2215,2015-08-04
.....\...\.....\..........\..............\MultiLabelStacking.class,16409,2015-08-04
.....\...\.....\..........\..............\PPT$Strategy.class,1219,2015-08-04
.....\...\.....\..........\..............\PPT.class,5943,2015-08-04
.....\...\.....\..........\..............\PrunedSets$Strategy.class,1242,2015-08-04
.....\...\.....\..........\..............\PrunedSets.class,6820,2015-08-04
.....\...\.....\..........\..............\TransformationBasedMultiLabelLearner.class,2291,2015-08-04
.....\...\.....\core
.....\...\.....\....\ArgumentNullException.class,1216,2015-08-04
.....\...\.....\....\MulanException.class,594,2015-08-04
.....\...\.....\....\MulanJavadoc.class,3615,2015-08-04
.....\...\.....\....\MulanRuntimeException.class,622,2015-08-04
.....\...\.....\....\Util.class,1104,2015-08-04
.....\...\.....\....\WekaException.class,604,2015-08-04
.....\...\.....\data
.....\...\.....\....\ConditionalDependenceIdentifier.class,8602,2015-08-04
.....\...\.....\....\ConverterCLUS.class,5825,2015-08-04
.....\...\.....\....\ConverterLibSVM.class,6687,2015-08-04
.....\...\.....\....\DataLoadException.class,616,2015-08-04
.....\...\.....\....\DataUtils.class,1281,2015-08-04
.....\...\.....\....\GreedyLabelClustering.class,8137,2015-08-04

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • OFDMQAM
    子载波数 128 位数/ 符号 2 符号数/ 载波 1000 训练符号数 0 循环前缀长度 8 (1/16)*T 调制方式 4-QAM 多径信道数 3 IFFT Size 128 信道最大时延 2 (Subcarriers median number of 128 percent/2 percent symbol symbol number/carrier training symbols 1000 a few 0 cyclic prefix length of 8 (1/16)* T modulation 4-QAM the number of multi-path channel 3 IFFT Size 128 the largest delay channel 2)
    2009-04-26 17:36:54下载
    积分:1
  • fangchafenxi
    利用离差分解法计算出方差分析表,并用F检验法,检查对给定的显著性水平 ,因子A对实验数据是否有限著影响(Use from the Finite Difference Method to calculate the analysis of variance table and F test, to check a given significance level, factor A is limited to whether the experimental data )
    2020-10-20 20:07:24下载
    积分:1
  • 2-3@
    a classification base on Baysian classifier , I did pca, lda, normalization on features either
    2011-06-13 14:59:12下载
    积分:1
  • hvdc_fourier
    hvdc fourier PSCAD using Matlab
    2014-10-09 03:54:42下载
    积分:1
  • gray
    this expalins gray pridiction algo for localisation method...........................
    2013-09-23 16:24:20下载
    积分:1
  • stlwrite
    Write STL file patch or surface data.
    2015-01-13 21:32:19下载
    积分:1
  • crstest_fuzzy
    这个是以fuzzy特征为例采用HMM方法进行分类的程序,里面用到的一些子函数都可以在HMM Toolbox里面找到(This is a classification code using HMM and taking fuzzy as example.the subfunctions in it can be find in the HMM toolbox.)
    2013-11-17 10:39:25下载
    积分:1
  • bouhun
    基于欧几里得距离的聚类分析,ofdm系统仿真 含16qam调制 fft 加窗 加cp等模块,matlab实现了五类灰色关联度模型的计算。( Clustering analysis based on Euclidean distance, ofdm system simulation including 16qam modulation fft windowing modules plus cp, matlab implements five gray correlation degree computing model.)
    2016-09-09 09:31:51下载
    积分:1
  • GATbxtool
    利用matlab 开发的另一遗传算法工具箱,运行速度快,可选功能多,是一个相当不错的工具箱。(Another development of the use of matlab genetic algorithm toolbox, running fast, many optional features, are a fairly good toolbox.)
    2009-02-16 16:20:33下载
    积分:1
  • GMSKMatLab
    m-fsk modulation and de modulation
    2010-09-08 01:44:51下载
    积分:1
  • 696518资源总数
  • 105873会员总数
  • 12今日下载