登录
首页 » Java » mulan

mulan

于 2020-12-17 发布 文件大小:976KB
0 251
下载积分: 1 下载次数: 7

代码说明:

  mulan实现多标签分类,内含多个重要的分类器,乃是分类中的精华(Mulan implementation of multi label classification, containing multiple important classifier, is the essence of the classification)

文件列表:

mulan
.....\.classpath,592,2015-08-04
.....\.project,381,2015-07-17
.....\bin
.....\...\emotions.arff,380476,2012-07-26
.....\...\emotions.xml,332,2012-07-26
.....\...\mlknn
.....\...\.....\Main.class,2023,2015-08-07
.....\...\.....\NewMlknn.class,8959,2015-08-10
.....\...\mulan
.....\...\.....\classifier
.....\...\.....\..........\InvalidDataException.class,638,2015-08-04
.....\...\.....\..........\lazy
.....\...\.....\..........\....\BRkNN$ExtensionType.class,1228,2015-08-04
.....\...\.....\..........\....\BRkNN.class,9309,2015-08-04
.....\...\.....\..........\....\IBLR_ML.class,6982,2015-08-04
.....\...\.....\..........\....\MLkNN.class,6547,2015-08-04
.....\...\.....\..........\....\MultiLabelKNN.class,2697,2015-08-11
.....\...\.....\..........\LearnerException.class,625,2015-08-04
.....\...\.....\..........\meta
.....\...\.....\..........\....\ClusteringBased.class,5471,2015-08-04
.....\...\.....\..........\....\ConstrainedKMeans$bucketInstance.class,1246,2015-08-04
.....\...\.....\..........\....\ConstrainedKMeans.class,12102,2015-08-04
.....\...\.....\..........\....\EnsembleOfSubsetLearners$IdComparator.class,1425,2015-08-04
.....\...\.....\..........\....\EnsembleOfSubsetLearners$LabelSubsetsWeight.class,2024,2015-08-04
.....\...\.....\..........\....\EnsembleOfSubsetLearners$SubsetsDistance.class,1956,2015-08-04
.....\...\.....\..........\....\EnsembleOfSubsetLearners.class,19559,2015-08-04
.....\...\.....\..........\....\HierarchyBuilder$Method.class,1289,2015-08-04
.....\...\.....\..........\....\HierarchyBuilder.class,14388,2015-08-04
.....\...\.....\..........\....\HMC.class,12965,2015-08-04
.....\...\.....\..........\....\HMCNode.class,3905,2015-08-04
.....\...\.....\..........\....\HOMER.class,6047,2015-08-04
.....\...\.....\..........\....\MultiLabelMetaLearner.class,783,2015-08-04
.....\...\.....\..........\....\RAkEL.class,7688,2015-08-04
.....\...\.....\..........\....\RAkELd.class,7078,2015-08-04
.....\...\.....\..........\....\SubsetLearner.class,14140,2015-08-04
.....\...\.....\..........\....\thresholding
.....\...\.....\..........\....\............\ExampleBasedFMeasureOptimizer.class,4345,2015-08-04
.....\...\.....\..........\....\............\Meta.class,6343,2015-08-04
.....\...\.....\..........\....\............\MetaLabeler.class,8911,2015-08-04
.....\...\.....\..........\....\............\MLPTO.class,7206,2015-08-04
.....\...\.....\..........\....\............\OneThreshold.class,8163,2015-08-04
.....\...\.....\..........\....\............\RCut.class,7500,2015-08-04
.....\...\.....\..........\....\............\SCut.class,8253,2015-08-04
.....\...\.....\..........\....\............\ThresholdPrediction.class,7430,2015-08-04
.....\...\.....\..........\ModelInitializationException.class,662,2015-08-04
.....\...\.....\..........\MultiLabelLearner.class,553,2015-08-04
.....\...\.....\..........\MultiLabelLearnerBase.class,2826,2015-08-04
.....\...\.....\..........\MultiLabelOutput.class,3841,2015-08-04
.....\...\.....\..........\neural
.....\...\.....\..........\......\BPMLL.class,13580,2015-08-04
.....\...\.....\..........\......\BPMLLAlgorithm.class,7512,2015-08-04
.....\...\.....\..........\......\DataPair.class,3092,2015-08-04
.....\...\.....\..........\......\MMPLearner.class,11988,2015-08-04
.....\...\.....\..........\......\MMPMaxUpdateRule.class,1471,2015-08-04
.....\...\.....\..........\......\MMPRandomizedUpdateRule.class,2979,2015-08-04
.....\...\.....\..........\......\MMPUniformUpdateRule.class,2257,2015-08-04
.....\...\.....\..........\......\MMPUpdateRuleBase.class,2674,2015-08-04
.....\...\.....\..........\......\MMPUpdateRuleType.class,1186,2015-08-04
.....\...\.....\..........\......\model
.....\...\.....\..........\......\.....\ActivationFunction.class,454,2015-08-04
.....\...\.....\..........\......\.....\ActivationLinear.class,924,2015-08-04
.....\...\.....\..........\......\.....\ActivationTANH.class,921,2015-08-04
.....\...\.....\..........\......\.....\BasicNeuralNet.class,4840,2015-08-04
.....\...\.....\..........\......\.....\NeuralNet.class,421,2015-08-04
.....\...\.....\..........\......\.....\Neuron.class,5100,2015-08-04
.....\...\.....\..........\......\ModelUpdateRule.class,321,2015-08-04
.....\...\.....\..........\......\NormalizationFilter.class,3682,2015-08-04
.....\...\.....\..........\......\ThresholdFunction.class,2833,2015-08-04
.....\...\.....\..........\transformation
.....\...\.....\..........\..............\AdaBoostMH.class,1851,2015-08-04
.....\...\.....\..........\..............\BinaryRelevance.class,3519,2015-08-04
.....\...\.....\..........\..............\CalibratedLabelRanking.class,10108,2015-08-04
.....\...\.....\..........\..............\ClassifierChain.class,5590,2015-08-04
.....\...\.....\..........\..............\EnsembleOfClassifierChains.class,6300,2015-08-04
.....\...\.....\..........\..............\EnsembleOfPrunedSets.class,5592,2015-08-04
.....\...\.....\..........\..............\IncludeLabelsClassifier.class,2715,2015-08-04
.....\...\.....\..........\..............\LabelPowerset.class,5025,2015-08-04
.....\...\.....\..........\..............\LabelsetPruning.class,3834,2015-08-04
.....\...\.....\..........\..............\MultiClassLearner.class,2215,2015-08-04
.....\...\.....\..........\..............\MultiLabelStacking.class,16409,2015-08-04
.....\...\.....\..........\..............\PPT$Strategy.class,1219,2015-08-04
.....\...\.....\..........\..............\PPT.class,5943,2015-08-04
.....\...\.....\..........\..............\PrunedSets$Strategy.class,1242,2015-08-04
.....\...\.....\..........\..............\PrunedSets.class,6820,2015-08-04
.....\...\.....\..........\..............\TransformationBasedMultiLabelLearner.class,2291,2015-08-04
.....\...\.....\core
.....\...\.....\....\ArgumentNullException.class,1216,2015-08-04
.....\...\.....\....\MulanException.class,594,2015-08-04
.....\...\.....\....\MulanJavadoc.class,3615,2015-08-04
.....\...\.....\....\MulanRuntimeException.class,622,2015-08-04
.....\...\.....\....\Util.class,1104,2015-08-04
.....\...\.....\....\WekaException.class,604,2015-08-04
.....\...\.....\data
.....\...\.....\....\ConditionalDependenceIdentifier.class,8602,2015-08-04
.....\...\.....\....\ConverterCLUS.class,5825,2015-08-04
.....\...\.....\....\ConverterLibSVM.class,6687,2015-08-04
.....\...\.....\....\DataLoadException.class,616,2015-08-04
.....\...\.....\....\DataUtils.class,1281,2015-08-04
.....\...\.....\....\GreedyLabelClustering.class,8137,2015-08-04

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Reducing-the-Number
    基于矩阵笔方法的稀疏阵列综合,是一篇引用率很好的文章(matrix pencil)
    2014-11-17 13:04:10下载
    积分:1
  • Plotting_Tutorial_New1
    Plot tutorial is using to calculate in Histogram Matlab
    2013-12-08 13:27:43下载
    积分:1
  • chap6
    hebb 学习规则 s-function 先进PID及其MATLAB仿真(hebb learning rule s-function of MATLAB simulation of advanced PID)
    2010-05-14 10:48:32下载
    积分:1
  • CSTR_modeling
    CSTR产生数据的程序。由于CSTR具有广泛的应用性,故特地利用伪随机序列激发CSTR系统,产生数据。(CSTR generate data procedures. As CSTR with extensive application, it specifically using pseudo-random sequence inspired CSTR systems to generate data.)
    2007-05-23 15:09:04下载
    积分:1
  • report_imp
    IMAGE COMPRESSION USING DISCRETE WAVELET AND DISCRETE COSINE TRANSFORM
    2010-06-15 00:49:09下载
    积分:1
  • AFSA-matlab
    鱼群算法之matlab实现(The achievement of fish-swarm algorithm matlab)
    2009-04-25 09:13:36下载
    积分:1
  • fftDissociation
    频谱选取,一般用于后续向量机的诊断的特征。进行了频谱分析后对每个频带的能量进行分离开。(Spectral selection, generally for subsequent diagnostic feature vector machine. Spectrum analysis conducted after the energy of each frequency band to leave.)
    2013-09-20 18:17:23下载
    积分:1
  • Eliminate-the-trend-method
    基于消除趋势项法的振动信号预处理研究.在MATLAB环境中对基于消除趋势项法的振动信号预处理的实例仿真分析。有 最小二乘法去趋势;正弦信号去趋势和滑动平均法等(In the MATLAB environment to eliminate the instance of the trend of the vibration signal preprocessing based on simulation analysis based on the signal preprocessing to eliminate the vibration of the trend of law. Least squares method to the trend sinusoidal signal to the trend and moving average method)
    2012-07-08 14:59:48下载
    积分:1
  • Untitled
    ls ber performance OF OFDM CHANNEL WHICH shows why ls in ofdm is better than other.
    2013-12-17 21:25:15下载
    积分:1
  • exist_noise_and_temper_freq1
    raman-OFDR仿真,存在温度和噪声的情况(raman-OFDR simulation,exist temperature and the presence of noise)
    2021-04-04 16:39:04下载
    积分:1
  • 696516资源总数
  • 106436会员总数
  • 7今日下载