-
Code自适应
传统的图像分割方法可以分为基于阈值、边缘、区域的方法等,而传统的分割方法在复杂图像分割中效果不好。为了提高图像分割的性能,我们提出了一种基于局部自适应窗口的Otsu方法。首先,分析了传统阈值法在复杂图像分割中不能很好地形成的原因,比较了全局阈值和局部阈值对图像分割的影响。其次,提出了根据局部信息自适应地改变局部窗口大小的方法,分析了该方法的特点。最后,证明了所提出的新方法优于其他方法。实验结果表明,与其他传统方法相比,该方法能保持更多的细节,获得更满意的结果。(The traditional image segmentation methods can be divided into thresholding, edge and region methods. The traditional segmentation methods do not perform well in the segmentation of complicated images. In order to improve the performance of image segmentation, we propose an adaptive windowed range-constrained Otsu method based on local information.First, the reason why traditional thresholding methods do not perform well in the segmentation of complicated images is analyzed. Therein, the influences of global and local thresholdings on the image segmentation are compared. Secondly, a method of adaptively changing the local window size based on local information is proposed, and the characteristics of the proposed method are analyzed. Finally, the superiority of the proposed method over other methods, It is validated by the experiments that the proposed method can keep more details and acquire much more satisfying results as compared with the other conventional methods.)
- 2018-10-24 15:04:08下载
- 积分:1
-
ibd_blindequalizer
内含盲均衡与盲解卷算法matlab程序,用于盲信号处理领域(intron blind equalization and blind deconvolution algorithm Matlab procedures for the blind signal processing field)
- 2020-12-22 15:39:07下载
- 积分:1
-
深居浅出AutoCAD二次开发.pdf
AutoCAD 以其通用的格式、完善的图形绘制功能及强大的图形编辑功能在各行业计算机辅助设计方面发挥着举足轻重的作用,对其进行二次开发能以更高精度、速度的进行计算机辅助设计,提高工作效率。如今 AutoCAD 支持的二次开发语言比较丰富,不管在哪种开发语言下对其进行二次开发 AutoCAD 的运行原理、程序设计的方法及开发思路是不变的。综合各种开发语言的性能、功能、开发周期、开发难度以及未来的趋势得出结论:在.NET(C#)环境下对其进行二次开发最为合适。本书力求循序渐进、由浅入深,详细介绍 AutoCAD 二次开发原理与技术。以.NET(C#)环境下二次开发为主线,并介绍.NET(C#)调用 ObjectARX(C )程序的方法,从而实现在 C#环境中构建程序框架(易于实现与修改),必要的时候在 C 环境中实现复杂或目前未托管的程序功能。融入 C 程序让.NET(C#)开发即便捷高效又功能强大。本书在详细的介绍 AutoCAD 基本对象及功能实现的同时结合丰富的开发实例以拓展开发的思路、指导实践开发的过程。本书内容安排如下:第一章“概述” 主要介绍 AutoCAD 软件的功能用途以及开发环境。第二章“AutoCAD 操作应用” 简单介绍软件的应用操作。第三章“程序设计基础” 主要介绍程序设计的基础。第四章“数据库基础” 主要介绍数据库相关的基础知识。第五章 “AutoCAD.NET 开发” 主要介绍 AutoCAD.NET APIs 及 AutoCAD 开发的基本方法与过程。第六章“开发实例” 详细介绍 AutoCAD 的开发过程以及开发思路。本书版权属于数字建筑网(http://www.BimCad.org)站长李冠亿所有。
- 2020-11-29下载
- 积分:1
-
gmcalab_le1.0
MCA,形态成分分析,广义图像处理,图像分解,图像降噪处理。(gmcalab
fgmca.m
imnb.m
sparse_noisy_examples.m)
- 2018-04-21 14:40:40下载
- 积分:1
-
LFToolbox0.4
说明: 可对lytro相机所得到的光场图像进行各种处理(The light field image obtained by lytro camera can be processed in various ways.)
- 2020-06-18 23:40:01下载
- 积分:1
-
rgb2hsi
将RGB彩色空间转换到HSI彩色空间,HSI彩色空间更接近人眼对彩色的认知。(The RGB color space conversion to the HSI color space, HSI color space is closer to the human eye color perception.)
- 2013-08-18 08:12:48下载
- 积分:1
-
ji
说明: 基于图像变换的火炮身管膛线参数检测技术研究(Based on image transform the Gun Barrel rifling parameter detection technology)
- 2013-03-07 09:16:32下载
- 积分:1
-
Rect_Insert
说明: 针对输入180个波束数据,通过使用抛物线插值法进行插值,最终得到720个波束的数据,用于图像显示(For 180 beam data input, 720 beam data are obtained by parabola interpolation method for image display)
- 2020-03-25 14:30:59下载
- 积分:1
-
2009svd
说明: 这是一个图像处理程序集,几乎实现了所有图像处理的基本方法,非常适合初学者(This is a set of image processing procedures, almost all the basic methods of image processing, very suitable for beginners)
- 2009-08-03 03:05:45下载
- 积分:1
-
PG_BOW_DEMO
图像的特征用到了Dense Sift,通过Bag of Words词袋模型进行描述,当然一般来说是用训练集的来构建词典,因为我们还没有测试集呢。虽然测试集是你拿来测试的,但是实际应用中谁知道测试的图片是啥,所以构建BoW词典我这里也只用训练集。
其实BoW的思想很简单,虽然很多人也问过我,但是只要理解了如何构建词典以及如何将图像映射到词典维上去就行了,面试中也经常问到我这个问题,不知道你们都怎么用生动形象的语言来描述这个问题?
用BoW描述完图像之后,指的是将训练集以及测试集的图像都用BoW模型描述了,就可以用SVM训练分类模型进行分类了。
在这里除了用SVM的RBF核,还自己定义了一种核: histogram intersection kernel,直方图正交核。因为很多论文说这个核好,并且实验结果很显然。能从理论上证明一下么?通过自定义核也可以了解怎么使用自定义核来用SVM进行分类。(Image features used in a Dense Sift, by the Bag of Words bag model to describe the word, of course, the training set is generally used to build the dictionary, because we do not test set. Although the test set is used as the test you, but who knows the practical application of the test image is valid, so I am here to build BoW dictionary only the training set.
In fact, BoW idea is very simple, although many people have asked me, but as long as you understand how to build a dictionary and how to image map to the dictionary D up on the line, and interviews are often asked me this question, do not know you all how to use vivid language to describe this problem?
After complete description of the image with BoW, refers to the training set and test set of images are described with the BoW model, the training of SVM classification model can be classified.
Apart from having to use the RBF kernel SVM, but also their own definition of a nuclear: histogram intersection kernel, histogram )
- 2011-11-01 17:01:09下载
- 积分:1