登录
首页 » matlab » SpectralClustering

SpectralClustering

于 2021-04-11 发布 文件大小:10600KB
0 161
下载积分: 1 下载次数: 23

代码说明:

  国外的一个本科生做的Matlab的GUI的界面,可以实现多维数据的谱聚类。(Foreign students to do the GUI Matlab interface, can achieve the spectral clustering of multi-dimensional data. Foreign students to do the GUI Matlab interface, can achieve the spectral clustering of multi-dimensional data.)

文件列表:

SpectralClustering
..................\2a.mat,5446,2015-04-12
..................\Bachelorarbeit.pdf,4913098,2014-02-12
..................\datasets
..................\........\1.csv,178250,2015-09-18
..................\........\2a.csv,5233,2015-09-18
..................\........\2b.csv,5974,2015-09-18
..................\........\2c.csv,7006,2015-09-18
..................\........\2d.csv,16905,2015-09-18
..................\........\Abalone
..................\........\.......\abalone.test.nld,397488,2014-02-12
..................\........\.......\res
..................\........\.......\...\abalone_clustered.csv,286375,2014-02-12
..................\........\.......\...\abalone_simgraph.mat,939904,2014-02-12
..................\........\Atom
..................\........\....\atom.test.csv,32405,2014-02-12
..................\........\....\res
..................\........\....\...\atom_clustered.csv,22969,2014-02-12
..................\........\....\...\atom_simgraph.mat,106179,2014-02-12
..................\........\Banknotes
..................\........\.........\banknoten_normed.nld,8509,2014-02-12
..................\........\.........\banknoten_orig.nld,6367,2014-02-12
..................\........\.........\res
..................\........\.........\...\banknotes_clustered.csv,8909,2014-02-12
..................\........\.........\...\banknotes_simgraph.mat,25949,2014-02-12
..................\........\Chainlink
..................\........\.........\chainlink.test.csv,40521,2014-02-12
..................\........\.........\res
..................\........\.........\...\chainlink_clustered.csv,28340,2014-02-12
..................\........\.........\...\chainlink_simgraph.mat,52186,2014-02-12
..................\........\Hepta
..................\........\.....\hepta.test.csv,8529,2014-02-12
..................\........\.....\res
..................\........\.....\...\hepta_clustered.csv,5964,2014-02-12
..................\........\.....\...\hepta_simgraph.mat,23792,2014-02-12
..................\........\Parkinsons
..................\........\..........\parkinsons.test.nld,32550,2014-02-12
..................\........\..........\res
..................\........\..........\...\res_Normal10_2.csv,35783,2014-02-12
..................\........\..........\...\res_Normal12_2.csv,35783,2014-02-12
..................\........\rainbowdash
..................\........\...........\CreateDataset.m,761,2014-02-12
..................\........\...........\CreateDataset2.m,1211,2014-02-12
..................\........\...........\rainbowdash_80.nld,146675,2014-02-12


..................\........\...........\res
..................\........\...........\...\rainbowdash_50_k2.png
..................\........\...........\...\rainbowdash_65_k2.png
..................\........\...........\...\rainbowdash_80_k2.png
..................\........\TwoMoons
..................\........\........\res
..................\........\........\...\twomoon_clustered.csv,266917,2014-02-12
..................\........\........\...\twomoon_simgraph.mat,2257088,2014-02-12
..................\........\........\twomoon-2d-50s.test.csv,449311,2014-02-12
..................\........\........\twomoons_normalized.nld,236963,2014-02-12
..................\........\V.csv,6240,2015-09-20
..................\........\VV.csv,6040,2015-09-20
..................\files
..................\.....\GUI
..................\.....\...\funcs
..................\.....\...\.....\convertClusterVector.m,346,2014-02-12
..................\.....\...\.....\getFuncs
..................\.....\...\.....\........\getOpenDialog.m,280,2014-02-12
..................\.....\...\.....\........\getPlotMarkerSize.m,68,2014-02-12
..................\.....\...\.....\........\getPlotMarkerStyle.m,73,2014-02-12
..................\.....\...\.....\........\getPlotWindowSize.m,259,2014-02-12
..................\.....\...\.....\........\getSaveDialog.m,282,2014-02-12
..................\.....\...\.....\........\getSimGraphParam.m,548,2014-02-12
..................\.....\...\.....\normalizeData.m,494,2014-02-12
..................\.....\...\.....\openPlotFigure.m,324,2014-02-12
..................\.....\...\.....\plotFuncs
..................\.....\...\.....\.........\plotCluster2D.m,1059,2014-02-12
..................\.....\...\.....\.........\plotCluster3D.m,1157,2014-02-12
..................\.....\...\.....\.........\plotClusterMatrix.m,933,2014-02-12
..................\.....\...\.....\.........\plotClusterStarCoordinates.m,1040,2014-02-12
..................\.....\...\.....\.........\plotData2D.m,456,2014-02-12
..................\.....\...\.....\.........\plotData3D.m,522,2014-02-12
..................\.....\...\.....\.........\plotDataMatrix.m,555,2014-02-12
..................\.....\...\.....\.........\plotDataStarCoordinates.m,789,2014-02-12
..................\.....\...\.....\.........\plotSilhouette.m,565,2014-02-12
..................\.....\...\.....\.........\plotSimGraph2D.m,2134,2014-02-12
..................\.....\...\.....\.........\plotSimGraph3D.m,2511,2014-02-12
..................\.....\...\.....\.........\plotSimGraphStarCoordinates.m,2505,2014-02-12
..................\.....\...\.....\saveCurrentFigure.m,417,2014-02-12
..................\.....\...\.....\setFuncs
..................\.....\...\.....\........\setCurrentSimGraphProperties.m,472,2014-02-12
..................\.....\...\.....\........\setPlotDimensionLists.m,627,2014-02-12
..................\.....\...\.....\........\setSimGraphEdits.m,707,2014-02-12
..................\.....\...\.....\toggleFuncs
..................\.....\...\.....\...........\disableDataLoaded.m,405,2014-02-12
..................\.....\...\.....\...........\enableDataClustered.m,296,2014-02-12
..................\.....\...\.....\...........\enableDataLoaded.m,325,2014-02-12
..................\.....\...\.....\...........\enableSimGraph.m,233,2014-02-12
..................\.....\...\.....\...........\togglePlotClusteredData.m,259,2014-02-12
..................\.....\...\.....\...........\togglePlotData.m,232,2014-02-12
..................\.....\...\.....\...........\togglePlotSilhouette.m,250,2014-02-12
..................\.....\...\.....\...........\togglePlotSimGraph.m,244,2014-02-12
..................\.....\...\.....\updateDataInfo.m,337,2014-02-12
..................\.....\...\.....\updateNormalized.m,486,2014-02-12

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • The-bp-neural-network-pid
    实现神经网络PID进行编程,仿真,此神经网络是BP神经网络。(Realize the neural network PID programming, simulation, the neural network is BP neural network.)
    2015-01-18 11:46:17下载
    积分:1
  • sample2
    最大熵法与Welch法估计的功率谱的比较。 多信号分类法估计的功率谱。 (Maximum entropy method and Welch' s power spectrum estimation comparison. Classification of multi-signal power spectrum estimate.)
    2009-02-04 23:10:50下载
    积分:1
  • codbsc
    simulation to verify efficiency of Convolutional Coding
    2011-02-15 14:39:57下载
    积分:1
  • MPPTFuzzyDC_DC
    this program use the fuzzy logic to track MPP of the PV
    2013-04-09 21:50:34下载
    积分:1
  • TestMatlab65
    C++和matlab混编示例 (Mixed C++ and matlab examples)
    2011-06-10 10:43:14下载
    积分:1
  • Wavelettransformgearpittingfault
    利用小波的消噪功能检测微弱的故障突变信号。(Using wavelet denoising function mutation detection of weak signals fault.)
    2015-03-23 16:46:53下载
    积分:1
  • JADE-MUSIC,JADE-ESPRIT和SI-JADE算法相比 JADEalgorithm
    为了实现DOA和时延的联合估计,提出了一个无线通信中高分辨率的联合角度和时延估计方法,该方法不需要对参数进行搜索,利用空时矩阵的特征向量和特征值分别估计DOA和时延,通过特征值和特征向量的对应关系,估计的参数可以自动实现配对, 只要各路径信号的DOA和时延不同时接近此方法都可以适用,与JADE-MUSIC,JADE-ESPRIT和SI-JADE算法相比,该算法具有较好的鲁棒性和较小的估计误差。仿真结果证明了该算法的有效性。 (In order to achieve the joint estimation of DOA and delay, proposed a wireless communications joint angle and high resolution delay estimation method, the method does not require parameters to search using the space-time matrix eigenvectors and eigenvalues​ ​ , respectively, and the estimated DOA delay, by the correspondence between eigenvalues ​ ​ and eigenvectors, the estimated parameters can be automatically paired DOA and delay of each path as long as the signal is not close to this same method can be applied, with the JADE-MUSIC, JADE-ESPRIT and SI-JADE algorithm, the algorithm has better robustness and smaller estimation error. The simulation results show the effectiveness of the algorithm.)
    2020-11-13 16:39:42下载
    积分:1
  • sfuntmpl_basic.c-matlab
    sfuntmpl_basic.c-这是matlab提供的c mex s函数模板(sfuntmpl_basic.c-This is a matlab function to provide a template of c mex s)
    2011-06-27 10:27:23下载
    积分:1
  • Cluster
    使用分解聚类算法在IRIS数据上进行聚类分析,IRIS数据是由鸢尾属植物的三种单独的花的测量结果所组成,模式类别数为3,特征维数是4,每类各有50个模式样本,总共有150个样本。(The use of decomposition in the IRIS data clustering algorithm on the cluster analysis, IRIS data are from the iris flower three separate components of the measurement results, models for category 3, 4 are characteristic dimension, of each type of each 50 model samples, a total of 150 samples.)
    2009-03-07 20:09:21下载
    积分:1
  • matlab-learning
    matlab自学经典教程,对初学者入门帮助较大(matlab self-classic guide more helpful to the beginner)
    2012-07-31 21:32:41下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载