登录
首页 » matlab » adaboost-and-rbf

adaboost-and-rbf

于 2015-10-14 发布 文件大小:264KB
0 197
下载积分: 1 下载次数: 28

代码说明:

  随机森林算法在图像特征分类回归中的应用,通过结合神经网络进行更好的特征数据处理(Application of random forest algorithm in image classification and regression, better features by combining neural networks data processing)

文件列表:

adaboost and rbf
................\abr_v1
................\......\@adabooster
................\......\...........\adabooster.m,1194,1999-12-10
................\......\...........\calc_output.m,1134,1999-12-10
................\......\...........\calc_output_step.m,1466,1999-12-10
................\......\...........\calc_output_steps.m,1776,1999-12-10
................\......\...........\comp_distr.m,611,1999-12-10
................\......\...........\comp_weight.m,1344,1999-12-10
................\......\...........\CVS
................\......\...........\...\Entries,1015,2001-06-25
................\......\...........\...\Repository,21,2001-10-14
................\......\...........\...\Root,51,2001-10-14
................\......\...........\display.m,468,1999-12-10
................\......\...........\do_learn.m,2266,1999-12-10
................\......\...........\finish_learn.m,934,1999-12-10
................\......\...........\get_class_errors_step.m,3195,1999-12-10
................\......\...........\get_last_distr.m,402,1999-12-10
................\......\...........\get_use_sign_output.m,390,1999-12-10
................\......\...........\init_learn.m,585,1999-12-10
................\......\...........\private
................\......\...........\.......\CVS
................\......\...........\.......\...\Entries,82,2001-06-25
................\......\...........\.......\...\Repository,27,2001-10-14
................\......\...........\.......\...\Root,51,2001-10-14
................\......\...........\.......\equal.m,637,1999-12-10
................\......\...........\.......\erfunc.m,418,1999-12-10
................\......\...........\.......\fmin.m,4523,1999-12-10
................\......\...........\.......\sigmoid.m,328,1999-12-11
................\......\...........\report.m,715,1999-12-10
................\......\...........\set_last_distr.m,410,1999-12-10
................\......\...........\set_use_sign_output.m,398,1999-12-10
................\......\...........\subsasgn.m,1268,1999-12-10
................\......\...........\subsref.m,1238,1999-12-10
................\......\@adabooster_regul
................\......\.................\adabooster_regul.m,1603,1999-12-11
................\......\.................\boost_func.m,369,1999-12-11
................\......\.................\boost_func_der.m,377,1999-12-11
................\......\.................\comp_distr.m,613,1999-12-11
................\......\.................\comp_weight.m,1287,1999-12-11
................\......\.................\CVS
................\......\.................\...\Entries,685,2001-06-25
................\......\.................\...\Repository,27,2001-10-14
................\......\.................\...\Root,51,2001-10-14
................\......\.................\display.m,491,1999-12-11
................\......\.................\do_learn.m,2317,1999-12-10
................\......\.................\get_fin_hyp.m,382,1999-12-10
................\......\.................\get_infl.m,406,1999-12-10
................\......\.................\get_phi.m,356,1999-12-10
................\......\.................\get_vi.m,334,1999-12-10
................\......\.................\private
................\......\.................\.......\CVS
................\......\.................\.......\...\Entries,82,2001-06-25
................\......\.................\.......\...\Repository,35,2001-10-14
................\......\.................\.......\...\Root,51,2001-10-14
................\......\.................\.......\equal.m,637,1999-12-10
................\......\.................\.......\erfunc.m,531,1999-12-11
................\......\.................\.......\fmin.m,4523,1999-12-10
................\......\.................\.......\sigmoid.m,328,1999-12-11
................\......\.................\set_fin_hyp.m,390,1999-12-10
................\......\.................\set_infl.m,370,1999-12-10
................\......\.................\subsasgn.m,1268,1999-12-10
................\......\.................\subsref.m,1280,1999-12-11
................\......\@booster_base
................\......\.............\booster_base.m,1178,1999-12-10
................\......\.............\CVS
................\......\.............\...\Entries,757,2001-06-25
................\......\.............\...\Repository,23,2001-10-14
................\......\.............\...\Root,51,2001-10-14
................\......\.............\display.m,515,1999-12-10
................\......\.............\get_boosted_learner.m,460,1999-12-10
................\......\.............\get_boost_steps.m,337,1999-12-10
................\......\.............\get_param.m,425,1999-12-10
................\......\.............\get_proto.m,301,1999-12-10
................\......\.............\get_vote_weight.m,355,1999-12-10
................\......\.............\get_vote_weights.m,343,1999-12-10
................\......\.............\set_boosted_learner.m,472,1999-12-10
................\......\.............\set_boost_steps.m,431,1999-12-10
................\......\.............\set_param.m,480,1999-12-10
................\......\.............\set_proto.m,371,1999-12-10
................\......\.............\set_vote_weights.m,432,1999-12-10
................\......\.............\subsasgn.m,1353,1999-12-10
................\......\.............\subsref.m,1313,1999-12-10
................\......\.............\train_weak.m,567,1999-12-10
................\......\@data
................\......\.....\check_std.m,576,1999-12-10
................\......\.....\consistent.m,830,1999-12-10
................\......\.....\data.asv,3278,2004-10-11
................\......\.....\data.m,3278,2004-10-11
................\......\.....\display.m,1630,1999-12-10
................\......\.....\get_idim.m,383,1999-12-10
................\......\.....\get_name.m,377,1999-12-10
................\......\.....\get_nsname.m,741,1999-12-10
................\......\.....\get_odim.m,387,1999-12-10
................\......\.....\get_sname.m,378,1999-12-10
................\......\.....\get_test.m,578,1999-12-10
................\......\.....\get_test_size.m,401,1999-12-10
................\......\.....\get_train.m,600,1999-12-10
................\......\.....\get_train_size.m,404,1999-12-10
................\......\.....\get_val.m,567,1999-12-10

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • LearningtheKalmanFilter
    When I first studied Kalman filtering, I saw many advanced signal processing submissions here at the MATLAB Central File exchange, but I didn t see a heavily commented, basic Kalman filter present to allow someone new to Kalman filters to learn about creating them. So, a year later, I ve written a very simple, heavily commented discrete filter.
    2007-09-09 15:26:48下载
    积分:1
  • newton
    this is code for nr method
    2010-10-22 19:52:54下载
    积分:1
  • rlax
    Returns zpk-model with casual parametres on inclinations ЛАХ and № a piece with wc.
    2010-02-17 21:17:23下载
    积分:1
  • time-frequency-analysis-toolbox-
    matlaB时频分析工具箱,对数据进行时频分析(time-frequency analysis toolbox matlaB, time-frequency analysis of the data)
    2013-03-11 22:10:54下载
    积分:1
  • PIDsimulink
    多变量PID控制的simulink仿真,用S函数(Multivariable PID control simulink simulation, with S function)
    2009-04-08 10:50:00下载
    积分:1
  • co2
    欧洲汽车CO2排放罚款计算,采用matlab、GUI进行编写,在2015年前都可以使用(Calculation of CO2 emissions from a fine European car, using matlab, GUI is written in 2015 can be used)
    2011-06-10 08:20:37下载
    积分:1
  • dfjk
    基于maltab的fm调制系统的设计 含有各种信噪比的调制(The fm modulation system based on maltab design contains a variety of signal to noise ratio of the modulation)
    2011-06-27 19:19:09下载
    积分:1
  • Truetime-Schedule
    利用Truetime工具箱进行网络控制系统建模,对比了RM、EDF、MEF-TOD网络调度算法。(Use Truetime toolbox for network control system modeling, compared to the RM, EDF, MEF-TOD network scheduling algorithm.)
    2020-09-16 11:47:57下载
    积分:1
  • wangluo.m
    This is a procedure for computing small-world .For large complex networks, understandably, their sheer size is very important. This procedure is useful.
    2011-10-10 15:34:18下载
    积分:1
  • sw_dist
    说明:  提供两个点坐标,可以利用本程序,计算两点距离,简单好用。(Coordinates of two points, you can use this procedure to calculate the distance to two points, easy-to-use.)
    2009-08-12 23:25:49下载
    积分:1
  • 696516资源总数
  • 106409会员总数
  • 8今日下载