登录
首页 » matlab » adaboost-and-rbf

adaboost-and-rbf

于 2015-10-14 发布 文件大小:264KB
0 155
下载积分: 1 下载次数: 28

代码说明:

  随机森林算法在图像特征分类回归中的应用,通过结合神经网络进行更好的特征数据处理(Application of random forest algorithm in image classification and regression, better features by combining neural networks data processing)

文件列表:

adaboost and rbf
................\abr_v1
................\......\@adabooster
................\......\...........\adabooster.m,1194,1999-12-10
................\......\...........\calc_output.m,1134,1999-12-10
................\......\...........\calc_output_step.m,1466,1999-12-10
................\......\...........\calc_output_steps.m,1776,1999-12-10
................\......\...........\comp_distr.m,611,1999-12-10
................\......\...........\comp_weight.m,1344,1999-12-10
................\......\...........\CVS
................\......\...........\...\Entries,1015,2001-06-25
................\......\...........\...\Repository,21,2001-10-14
................\......\...........\...\Root,51,2001-10-14
................\......\...........\display.m,468,1999-12-10
................\......\...........\do_learn.m,2266,1999-12-10
................\......\...........\finish_learn.m,934,1999-12-10
................\......\...........\get_class_errors_step.m,3195,1999-12-10
................\......\...........\get_last_distr.m,402,1999-12-10
................\......\...........\get_use_sign_output.m,390,1999-12-10
................\......\...........\init_learn.m,585,1999-12-10
................\......\...........\private
................\......\...........\.......\CVS
................\......\...........\.......\...\Entries,82,2001-06-25
................\......\...........\.......\...\Repository,27,2001-10-14
................\......\...........\.......\...\Root,51,2001-10-14
................\......\...........\.......\equal.m,637,1999-12-10
................\......\...........\.......\erfunc.m,418,1999-12-10
................\......\...........\.......\fmin.m,4523,1999-12-10
................\......\...........\.......\sigmoid.m,328,1999-12-11
................\......\...........\report.m,715,1999-12-10
................\......\...........\set_last_distr.m,410,1999-12-10
................\......\...........\set_use_sign_output.m,398,1999-12-10
................\......\...........\subsasgn.m,1268,1999-12-10
................\......\...........\subsref.m,1238,1999-12-10
................\......\@adabooster_regul
................\......\.................\adabooster_regul.m,1603,1999-12-11
................\......\.................\boost_func.m,369,1999-12-11
................\......\.................\boost_func_der.m,377,1999-12-11
................\......\.................\comp_distr.m,613,1999-12-11
................\......\.................\comp_weight.m,1287,1999-12-11
................\......\.................\CVS
................\......\.................\...\Entries,685,2001-06-25
................\......\.................\...\Repository,27,2001-10-14
................\......\.................\...\Root,51,2001-10-14
................\......\.................\display.m,491,1999-12-11
................\......\.................\do_learn.m,2317,1999-12-10
................\......\.................\get_fin_hyp.m,382,1999-12-10
................\......\.................\get_infl.m,406,1999-12-10
................\......\.................\get_phi.m,356,1999-12-10
................\......\.................\get_vi.m,334,1999-12-10
................\......\.................\private
................\......\.................\.......\CVS
................\......\.................\.......\...\Entries,82,2001-06-25
................\......\.................\.......\...\Repository,35,2001-10-14
................\......\.................\.......\...\Root,51,2001-10-14
................\......\.................\.......\equal.m,637,1999-12-10
................\......\.................\.......\erfunc.m,531,1999-12-11
................\......\.................\.......\fmin.m,4523,1999-12-10
................\......\.................\.......\sigmoid.m,328,1999-12-11
................\......\.................\set_fin_hyp.m,390,1999-12-10
................\......\.................\set_infl.m,370,1999-12-10
................\......\.................\subsasgn.m,1268,1999-12-10
................\......\.................\subsref.m,1280,1999-12-11
................\......\@booster_base
................\......\.............\booster_base.m,1178,1999-12-10
................\......\.............\CVS
................\......\.............\...\Entries,757,2001-06-25
................\......\.............\...\Repository,23,2001-10-14
................\......\.............\...\Root,51,2001-10-14
................\......\.............\display.m,515,1999-12-10
................\......\.............\get_boosted_learner.m,460,1999-12-10
................\......\.............\get_boost_steps.m,337,1999-12-10
................\......\.............\get_param.m,425,1999-12-10
................\......\.............\get_proto.m,301,1999-12-10
................\......\.............\get_vote_weight.m,355,1999-12-10
................\......\.............\get_vote_weights.m,343,1999-12-10
................\......\.............\set_boosted_learner.m,472,1999-12-10
................\......\.............\set_boost_steps.m,431,1999-12-10
................\......\.............\set_param.m,480,1999-12-10
................\......\.............\set_proto.m,371,1999-12-10
................\......\.............\set_vote_weights.m,432,1999-12-10
................\......\.............\subsasgn.m,1353,1999-12-10
................\......\.............\subsref.m,1313,1999-12-10
................\......\.............\train_weak.m,567,1999-12-10
................\......\@data
................\......\.....\check_std.m,576,1999-12-10
................\......\.....\consistent.m,830,1999-12-10
................\......\.....\data.asv,3278,2004-10-11
................\......\.....\data.m,3278,2004-10-11
................\......\.....\display.m,1630,1999-12-10
................\......\.....\get_idim.m,383,1999-12-10
................\......\.....\get_name.m,377,1999-12-10
................\......\.....\get_nsname.m,741,1999-12-10
................\......\.....\get_odim.m,387,1999-12-10
................\......\.....\get_sname.m,378,1999-12-10
................\......\.....\get_test.m,578,1999-12-10
................\......\.....\get_test_size.m,401,1999-12-10
................\......\.....\get_train.m,600,1999-12-10
................\......\.....\get_train_size.m,404,1999-12-10
................\......\.....\get_val.m,567,1999-12-10

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论


0 个回复

  • Matlab6.0
    matlab 图像处理的函数和一些实例,希望对大家有帮助(Ho Kam 雵轨灴霃?硛 matlab unruly 氲?Nanjing Ke Si 鞝? sentence 霘る寱靻?oligonucleotide 瓿?Tang Liao)
    2008-06-05 20:22:13下载
    积分:1
  • loop-gainKalmanfiltersourcecodepackage
    说明:  自己编写的一个循环增益卡尔曼滤波程序包,用于对机动目标进行检测和跟踪的滤波算法,给出目标数学模型和噪声模型,仿真后给出平均观测误差。程序里相应位置有标有注释。供做雷达机动目标检测和跟踪方面研究的人员参考。(I have written a loop-gain Kalman filter package, used for maneuvering target detection and tracking of the filter algorithm, given objective mathematical model and noise model of simulation, the average observation error is given. Procedures in place are marked with the corresponding notes. Do radar for maneuvering target detection and tracking studies for reference.)
    2010-04-15 16:21:59下载
    积分:1
  • On_off_Keying
    this program is for on-off-keying signalling modulation.
    2010-10-25 13:50:47下载
    积分:1
  • OPTIMAL.C.tar
    optimal page replacement algorithm
    2014-09-09 13:57:26下载
    积分:1
  • CDMA
    adm.alhomsi from homs city
    2013-03-05 19:19:59下载
    积分:1
  • MATLABProgrammingForEngineers
    详细讲述了如何用matlab进行程序设计,如何编写高效的程序。(Describe in detail how to use matlab program design, how to write efficient programs.)
    2012-11-13 23:53:08下载
    积分:1
  • comm-lab
    communication laboratory exercisez, ASK, PSK and FSK modulations
    2012-11-28 16:33:35下载
    积分:1
  • AP
    说明:  近邻传播是一种较新颖的聚类方法,运算量少,聚类速度快。(Affinity Propagation is a new clustering method, which has a low calculation and high clustering speed.)
    2014-04-04 15:42:07下载
    积分:1
  • mountaintopopt
    说明:  根据moutaintop空时自适应数据编写的最优STAP方法(According to data prepared moutaintop space-time adaptive optimal space-time adaptive processing)
    2011-04-07 18:02:56下载
    积分:1
  • C7
    matlab generation.mdl
    2013-10-06 23:01:59下载
    积分:1
  • 696518资源总数
  • 105142会员总数
  • 2今日下载