登录
首页 » matlab » MultiobjectivebasedonGA

MultiobjectivebasedonGA

于 2021-01-04 发布 文件大小:79KB
0 234
下载积分: 1 下载次数: 122

代码说明:

  基于遗传算法的多目标优化,matlab开发(Based on genetic algorithm for multi-objective optimization, matlab development)

文件列表:

基于遗传算法的多目标优化
........................\基于混合Pareto遗传算法的多目标优化.doc,126464,2008-03-15
........................\源代码
........................\......\单目标优化
........................\......\..........\0-1背包问题
........................\......\..........\...........\adjust_individule_value_ZXZ.m,540,2008-03-03
........................\......\..........\...........\adjust_ZXZ.m,598,2008-02-29
........................\......\..........\...........\calfitval_ZXZ.m,454,2008-02-29
........................\......\..........\...........\calobj_ZXZ.m,366,2008-03-03
........................\......\..........\...........\crossover_ZXZ.m,671,2008-03-03
........................\......\..........\...........\initpop_ZXZ.m,263,2008-02-29
........................\......\..........\...........\knapsack_exampledata500.dat,4000,2006-10-31
........................\......\..........\...........\mainf_ZXZ.m,1071,2008-03-10
........................\......\..........\...........\mutation_ZXZ.m,395,2008-03-03
........................\......\..........\...........\readme.txt,127,2008-03-15
........................\......\..........\...........\read_data_ZXZ.m,239,2008-02-29
........................\......\..........\...........\resultsave_ZXZ.m,71,2008-03-10
........................\......\..........\...........\selection_ZXZ.m,886,2008-02-29
........................\......\..........\...........\selectmax_ZXZ.m,566,2008-03-03
........................\......\..........\级数优化
........................\......\..........\........\adaptF.m,238,2008-03-15
........................\......\..........\........\so.m,1663,2008-03-15
........................\......\多目标优化
........................\......\..........\addindiv_ZXZM.m,1962,2008-03-10
........................\......\..........\calfitval_ZXZ.m,524,2008-03-10
........................\......\..........\calindividulselrate_ZXZM.m,885,2008-03-08
........................\......\..........\calminval_ZXZM.m,937,2008-03-10
........................\......\..........\calobjvalf1_ZXZM.m,338,2008-03-08
........................\......\..........\calobjvalf2_ZXZM.m,363,2008-03-08
........................\......\..........\calobjvalf3_ZXZM.m,368,2008-03-08
........................\......\..........\calobjvalf4_ZXZM.m,446,2008-03-08
........................\......\..........\crossover_ZXZM.m,1429,2008-03-08
........................\......\..........\f11.m,33,2008-03-05
........................\......\..........\f12.m,33,2008-03-05
........................\......\..........\f21.m,150,2008-03-08
........................\......\..........\f22.m,33,2008-03-05
........................\......\..........\f31.m,43,2008-03-07
........................\......\..........\f32.m,57,2008-03-07
........................\......\..........\f41.m,32,2008-03-08
........................\......\..........\f42.m,128,2008-03-08
........................\......\..........\fdispplot_ZXZM.m,269,2008-03-15
........................\......\..........\getbestset_ZXZM.m,467,2008-03-08
........................\......\..........\getfF_ZXZM.m,756,2008-03-12
........................\......\..........\getmulset_ZXZM.m,1354,2008-03-11
........................\......\..........\initpop12_ZXZM.m,347,2008-03-08
........................\......\..........\initpop3_ZXZM.m,604,2008-03-08
........................\......\..........\initpop4_ZXZM.m,247,2008-03-08
........................\......\..........\mainf_ZXZM.m,1707,2008-03-15
........................\......\..........\mutation_ZXZM.m,1210,2008-03-08
........................\......\..........\paretosort_ZXZM.m,784,2008-03-09
........................\......\..........\readme.txt,127,2008-03-15
........................\......\..........\resultsave_ZXZM.m,71,2008-03-10
........................\......\..........\selection_ZXZ.m,873,2008-03-10
........................\......\..........\selection_ZXZM.m,1162,2008-03-08
........................\......\..........\selunctrlsol_ZXZM.m,1070,2008-03-08

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • PSO(matlab)
    在matlab7.0下沒問題,有性趣的人可以拿回去參考參考。(Matlab7.0 no problem in the next, there are interested people can go back and refer to the reference holding.)
    2009-05-19 16:40:01下载
    积分:1
  • TP-Trapez
    Intégration par la méthode des trapèzes. Le principe de cette méthode est analogue à celui de l intégration par une série de rectangles.
    2013-01-01 20:52:25下载
    积分:1
  • MutualInfo
    用非参数估计的方法(核密度估计)来估计互信息(Nonparametric estimation method (kernel density estimation) to estimate the mutual information)
    2020-12-08 16:09:21下载
    积分:1
  • zgccchaoliujisuanxiadaozhi
    根据夏道止老师编的电力系统分析教材里的潮流计算原理编写的(Calculated in accordance with the principles of writing Harcourt Road teacher only power system analysis compiled textbooks trend)
    2014-08-30 20:42:21下载
    积分:1
  • FOC
    这是一个运用矢量控制方法实现异步电机调速的matlab模型,可以输出理想波形,绝对正确。(This is an asynchronous motor speed regulation using vector control method of matlab model, can output the ideal waveform, absolutely right. )
    2020-10-28 12:49:58下载
    积分:1
  • zimmerk_scia05
    eBook about ANPR. Finding, analizing, process images to find regestration number plate in the image
    2010-01-25 00:10:00下载
    积分:1
  • matlab
    这是冈萨雷斯数字图像处理matlab版教材的源代码,对学习图像处理的朋友很有帮助(This is Gonzalez of digital image processing matlab source code version of the textbook and friends to learn useful image processing)
    2015-03-01 10:56:07下载
    积分:1
  • regiongrow
    该程序主要用于matlab对图像进行区域检测分割 其原理是区域生长法 需要自己设定阈值 选取生长点(The program is mainly used matlab image area detection principle is divided region growing needs its own set threshold growing point)
    2013-12-30 01:06:27下载
    积分:1
  • 1807.01622
    深度神经网络在函数近似中表现优越,然而需要从头开始训练。另一方面,贝叶斯方法,像高斯过程(GPs),可以利用利用先验知识在测试阶段进行快速推理。然而,高斯过程的计算量很大,也很难设计出合适的先验。本篇论文中我们提出了一种神经模型,条件神经过程(CNPs),可以结合这两者的优点。CNPs受灵活的随机过程的启发,比如GPs,但是结构是神经网络,并且通过梯度下降训练。CNPs通过很少的数据训练后就可以进行准确的预测,然后扩展到复杂函数和大数据集。我们证明了这个方法在一些典型的机器学习任务上面的的表现和功能,比如回归,分类和图像补全(Deep neural networks perform well in function approximation, but they need to be trained from scratch. On the other hand, Bayesian methods, such as Gauss Process (GPs), can make use of prior knowledge to conduct rapid reasoning in the testing stage. However, the calculation of Gauss process is very heavy, and it is difficult to design a suitable priori. In this paper, we propose a neural model, conditional neural processes (CNPs), which can combine the advantages of both. CNPs are inspired by flexible stochastic processes, such as GPs, but are structured as neural networks and trained by gradient descent. CNPs can predict accurately with very little data training, and then extend to complex functions and large data sets. We demonstrate the performance and functions of this method on some typical machine learning tasks, such as regression, classification and image completion.)
    2020-06-23 22:20:02下载
    积分:1
  • matlab001
    matlab LMA仿真自适应滤波 关于LMS自适应滤波器的MATLABA实现 (Simulation of adaptive filtering matlab LMA on the LMS adaptive filter to achieve the MATLABA)
    2009-06-22 16:32:03下载
    积分:1
  • 696518资源总数
  • 105885会员总数
  • 31今日下载