登录
首页 » matlab » LSSVM

LSSVM

于 2015-12-27 发布 文件大小:986KB
0 226
下载积分: 1 下载次数: 20

代码说明:

  最小二乘支持向量机,程序粘到command window里,设定 2 两个参数,可以更改,以达到最优化(igam=0.001 isig2=0.001 [gam,sig2]=tunelssvm({X,Y, f ,igam,isig2, RBF_kernel },... [0.001 0.001 10000 10000], gridsearch ,{}, leaveoneout_lssvm ) type= function approximation kernel= RBF_kernel model=initlssvm(X,Y,type,gam,sig2,kernel) model model=trainlssvm(model) Yt=simlssvm(model,Xt) )

文件列表:

LSSVM
.....\LS-SVMlab1.5
.....\............\AFE.m,2738,2008-08-27
.....\............\bay_errorbar.m,5785,2008-08-27
.....\............\bay_initlssvm.m,2003,2008-08-27
.....\............\bay_lssvm.m,10345,2008-08-27
.....\............\bay_lssvmARD.m,8187,2008-08-27
.....\............\bay_modoutClass.m,9358,2008-08-27
.....\............\bay_optimize.m,5977,2008-08-27
.....\............\bay_rr.m,4178,2008-08-27
.....\............\changelssvm.m,5632,2008-08-27
.....\............\code.m,4245,2008-08-27
.....\............\codedist_bay.m,2118,2008-08-27
.....\............\codedist_hamming.m,756,2008-08-27
.....\............\codedist_loss.m,2018,2008-08-27
.....\............\codelssvm.m,4125,2008-08-27
.....\............\code_ECOC.m,5197,2008-08-27
.....\............\code_MOC.m,550,2008-08-27
.....\............\code_OneVsAll.m,364,2008-08-27
.....\............\code_OneVsOne.m,555,2008-08-27
.....\............\crossvalidate.m,8174,2008-08-27
.....\............\deltablssvm.m,1886,2008-08-27
.....\............\democlass.m,3369,2008-08-27
.....\............\demofun.m,3864,2008-08-27
.....\............\demomodel.m,4747,2008-08-27
.....\............\demo_fixedclass.m,2239,2008-08-27
.....\............\demo_fixedsize.m,3099,2008-08-27
.....\............\demo_yinyang.m,3337,2008-08-27
.....\............\denoise_kpca.m,3507,2008-08-27
.....\............\eign.m,3414,2008-08-27
.....\............\gridsearch.m,6927,2008-08-27
.....\............\hs_err_pid3144.log,16784,2009-10-30
.....\............\initlssvm.m,4042,2008-08-27
.....\............\kentropy.m,2206,2008-08-27
.....\............\kernel_matrix.m,2182,2008-08-27
.....\............\kpca.m,4833,2008-08-27
.....\............\latentlssvm.m,2398,2008-08-27
.....\............\leaveoneout.m,5510,2008-08-27
.....\............\leaveoneout_lssvm.m,5215,2008-08-27
.....\............\linesearch.m,3758,2008-08-27
.....\............\linf.m,313,2008-08-27
.....\............\lin_kernel.m,516,2008-08-27
.....\............\lssvm.dll,22528,2008-08-27
.....\............\lssvm1024.dll,22528,2008-08-27
.....\............\lssvm256.dll,22528,2008-08-27
.....\............\lssvm64.dll,22528,2008-08-27
.....\............\lssvmFILE.exe,25208,2008-08-27
.....\............\lssvmFILE.m,2558,2008-08-27
.....\............\lssvmFILE1024.exe,28260,2008-08-27
.....\............\lssvmFILE256.exe,28260,2008-08-27
.....\............\lssvmFILE64.exe,28256,2008-08-27
.....\............\lssvmMATLAB.m,3534,2008-08-27
.....\............\medae.m,311,2008-08-27
.....\............\misclass.m,693,2008-08-27
.....\............\MLP_kernel.m,608,2008-08-27
.....\............\mse.m,290,2008-08-27
.....\............\phitures.dll,8704,2008-08-27
.....\............\plotlssvm.m,9672,2008-08-27
.....\............\poly_kernel.m,641,2008-08-27
.....\............\postlssvm.m,4838,2008-08-27
.....\............\predict.m,3485,2008-08-27
.....\............\prelssvm.m,6226,2008-08-27
.....\............\RBF_kernel.m,1073,2008-08-27
.....\............\rcrossvalidate.m,5665,2008-08-27
.....\............\ridgeregress.m,1436,2008-08-27
.....\............\robustlssvm.m,3067,2008-08-27
.....\............\roc.m,7416,2008-08-27
.....\............\simclssvm.dll,22016,2008-08-27
.....\............\simclssvm1024.dll,22016,2008-08-27
.....\............\simclssvm256.dll,22016,2008-08-27
.....\............\simclssvm64.dll,22016,2008-08-27
.....\............\simFILE.exe,26812,2008-08-27
.....\............\simFILE.m,2607,2008-08-27
.....\............\simFILE1024.exe,26812,2008-08-27
.....\............\simFILE256.exe,26812,2008-08-27
.....\............\simFILE64.exe,26812,2008-08-27
.....\............\simlssvm.m,7110,2008-08-27
.....\............\sparselssvm.m,3434,2008-08-27
.....\............\trainlssvm.m,10431,2008-08-27
.....\............\trimmedmse.m,1711,2008-08-27
.....\............\tunelssvm.m,9976,2008-08-27
.....\............\validate.m,4551,2008-08-27
.....\............\windowize.m,1937,2008-08-27
.....\............\windowizeNARX.m,1832,2008-08-27
.....\............\X.mat,2373,2008-08-27
.....\............\Y.mat,206,2008-08-27
.....\LS-SVM工具箱使用方法.pdf,916258,2008-08-27
.....\LS-SVM程序-刘飞.txt,343,2009-12-31

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • DSP-using-matlap-programs
    10 labs for digital signal processing for beginners using matlab
    2011-11-10 15:55:18下载
    积分:1
  • adaboost
    AdaBoost元算法属于boosting系统融合方法中最流行的一种,说白了就是一种串行训练并且最后加权累加的系统融合方法。 具体的流程是:每一个训练样例都赋予相同的权重,并且权重满足归一化,经过第一个分类器分类之后, 计算第一个分类器的权重alpha值,并且更新每一个训练样例的权重,然后再进行第二个分类器的训练,相同的方法....... 直到错误率为0或者达到指定的训练轮数,其中最后预测的标签计算是各系统*alpha的加权和,然后sign(预测值)。 可以看出,训练流程是串行的,并且训练样例的权重是一直在变化的,分错的样本的权重不断加大,正确的样本的权重不断减小。 AdaBoost元算法是boosting中流行的一种,还有其他的系统融合的方法,比如bagging方法以及随机森林。 对于非均衡样本的处理,一般可以通过欠抽样(undersampling)或者过抽样(oversampling),欠抽样是削减样本的数目, 过抽样是重复的选取某些样本,最好的方法是两种进行结合的方法。 同时可以通过删除离决策边界比较远的样例。 (AdaBoost boosting systems dollar fusion algorithm is the most popular one, it plainly systems integration approach is a serial train and final weighted cumulative. Specific process is: Each training example is given equal weight, and the weights satisfy normalization, after the first classifiers after Calculating a first classifier weights alpha value for each sample and updates right weight training, and then the second classifier training, the same way ....... 0, or until the specified error rate training rounds, wherein the label is the calculation of the final prediction system* alpha weighted and then sign (predicted value). As can be seen, the training process is serial, and weight training examples is always changing, the right of the wrong sample weight continued to increase, the right to correct sample weight decreasing. AdaBoost algorithm is an element, as well as other methods of boosting popular systems integration, such as bagging and random forest method. For )
    2014-07-09 19:24:29下载
    积分:1
  • JFO
    考虑空穴效应的雷诺方程数值分析求解,MATLAB编程(Consider the effect of Reynolds equations hole)
    2015-11-05 21:17:30下载
    积分:1
  • 信息熵
    在很多图像处理的过程中,需要判别一个图像的清晰度,和图像分割结果的优劣,于是就引出了信息熵的概念,绝大多数时候,它都被用来作为评价图像的一个量化标准。(In many image processing processes, it is necessary to distinguish the clarity of an image and the result of image segmentation, so the concept of information entropy is introduced. Most of the time, it is used as a quantitative standard to evaluate the image.)
    2018-12-25 16:40:19下载
    积分:1
  • EmbWebB_FS_V14.70
    EmbeddedWebBrowser_FS_Version 14.70.0〖含全部源码和DEMO,支持D5-XE2〗
    2014-12-09 22:42:27下载
    积分:1
  • Matlab-functions
    Matlab-functions,Matlab的所有函数,很好的资料哦,全免费的(Matlab-functions, Matlab all the functions, information Oh well, all free of charge)
    2008-04-09 09:30:02下载
    积分:1
  • MATLAB非线性动力学控制问题
    非线性动力学控制问题 利用MATLAB中的simulink对非线性动力学进行研究(Control of nonlinear dynamics using MATLAB simulink in the study of nonlinear dynamics)
    2020-06-27 01:40:01下载
    积分:1
  • 点云数据到平面的距离
    说明:  该代码可求解点云数据中每一个点到A、B、C所确定的平面的距离(The code can solve the distance from each point in point cloud data to the plane determined by A, B and C.)
    2020-11-15 14:39:41下载
    积分:1
  • SUSAN
    SUSAN算子检测图像边缘和角点,可以自己定义不同的检测模板,实现不同功能的角点检测。(SUSAN operator detect image edges and corners, can define a different template to different functions of the corner detection.)
    2011-01-15 18:51:15下载
    积分:1
  • rec
    rectifier electrical converter
    2012-06-18 01:15:06下载
    积分:1
  • 696518资源总数
  • 106235会员总数
  • 12今日下载