登录
首页 » matlab » Erlang

Erlang

于 2020-12-25 发布 文件大小:9KB
0 201
下载积分: 1 下载次数: 13

代码说明:

  Matlab生成Erlang分布随机数的m文件。Erlang分布能拟合其他几乎所有的分布,更具有一般性。(Matlab to generate random numbers m Erlang distribution file. Erlang distribution can fit almost all other distributions, more general.)

文件列表:

Erlang
......\erlang.m,220,2010-04-14
......\read me.docx,11746,2016-01-25

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Jakes_Flat
    Jakes模型对衰弱信道进行仿真 在仿真时,先定义一个模型,再在主函数中调用这个模型,下面是主函数的程序(Jakes model debilitating channel simulation)
    2013-07-23 10:07:48下载
    积分:1
  • registration
    主要介绍了当前图像配准的情况,并介绍了非弹性图像配准,是一篇很好的参考文献(Introduces the current situation in image registration, and introduced the non-elastic image registration, is a good reference)
    2010-05-22 08:16:11下载
    积分:1
  • Log_Barr_grad_V2
    Convex Optimization(Log_Barrier_Gradient approach)
    2013-04-19 15:15:04下载
    积分:1
  • bilateral
    canny算子边缘检测源码,用matlab实现,如果需要,请及时下载(canny edge detection source, using matlab to achieve, if you need, please download)
    2014-01-13 11:25:16下载
    积分:1
  • montecarol
    蒙特卡洛法课件 有几个版本的 ppt格式 还有matlab 的例题(lecture notes on Monte Carol method)
    2009-02-04 08:38:00下载
    积分:1
  • factorial
    用matlab编的一个程序用于求一个数的阶乘(Matlab made with a procedure for seeking a number of factorial)
    2009-03-20 23:06:03下载
    积分:1
  • SegyMAT
    读取地震数据的重要模块,这里包含了segy与su文件格式的文件读写还有一些基本的设置模块,非常强大和实用。具有独立性的模块,便于携带和复制!(Read seismic data module, file read and write segy su file format, there are some basic settings module is very powerful and practical. The independence of the modules, easy to carry and copy!)
    2012-07-18 12:42:44下载
    积分:1
  • yibudianjishiliangkongzhi
    异步电动机的矢量控制仿真,用simulink做的,里面还有一个讲解用的PPT。(Induction motor vector control simulation, simulink do, there is also a narrator with the PPT.)
    2013-05-20 09:14:14下载
    积分:1
  • matlab
    实现毫米波雷达与红外雷达的数据融合算法研究多传感器数据融合算法(The realization of millimeter-wave radar and infrared radar data fusion algorithm for multi-sensor data fusion algorithm)
    2009-04-12 22:01:59下载
    积分:1
  • fig3_5
    when SNR is high , 1st sample estimator provides good estimate of A. it has no noise effect . so we don’t need averaging effect to reduce noise when SNR is high. However variance is still low in sample mean estimator which shows that in reality ,sample mean is good estimator than 1st sample estimator. So, for high SNR, we do not need to reduce the effect of noise by averaging. or we can say that for high SNR let say >1000 , 1st sample estimator got reduced noise. But as for as variance is concerned , the sample mean has low variance for high SNR as well.
    2013-05-02 02:45:33下载
    积分:1
  • 696516资源总数
  • 106409会员总数
  • 8今日下载