101259363Desktop
代码说明:
传统的K-medoids聚类算法的聚类结果随初始中心点的 不同而波动,且计算复杂度较高不适宜处理大规模数据集; 快速K-medoids聚类算法通过选择合适的初始聚类中心改进 了传统K-medoids聚类算法,但是快速K-medoids聚类算法 的初始聚类中心有可能位于同一类簇。为了克服传统的K- medoids聚类算法和快速K-medoids聚类算法的缺陷,提出 一种基于粒计算的K-medoids聚类算法。(The traditional K-medoids clustering algorithm clustering results with different initial center points and volatility, and high computational complexity is not suitable for processing large data sets; K-medoids clustering algorithm by choosing proper initial cluster centers to improve the traditional K-medoids clustering algorithm, but the initial cluster center of K-medoids clustering algorithm can be located in the same cluster. In order to overcome the shortcomings of the traditional K- medoids clustering algorithm and the fast K-medoids clustering algorithm, a K-medoids clustering algorithm based on granular computing is proposed.)
文件列表:
lizi.m
k_medoids.m
下载说明:请别用迅雷下载,失败请重下,重下不扣分!