登录
首页 » Verilog » emif2axi_v1_00_a

emif2axi_v1_00_a

于 2020-12-01 发布 文件大小:6KB
0 190
下载积分: 1 下载次数: 5

代码说明:

  emif接口转axi接口,在多个项目中使用,功能完善(EMIF interface to Axi interface, used in many projects, perfect function)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • SAP所有表及关系.XLS
    SAP 数据表清单,包含SAP所有后台数据表(List of SAP data tables, including all SAP background data tables)
    2020-06-22 03:20:01下载
    积分:1
  • CodingNation Crypter Source
    file crypter in vb6 source
    2019-03-17 10:31:58下载
    积分:1
  • 网络实验4 RAW_TCP客户端实验
    说明:  RAW_TCP客户端实验LWIP Porting with UCOS Operating System(RAW_TCP Client Experiments)
    2019-05-09 14:50:41下载
    积分:1
  • F2812 FLASH烧写软件,大家都来看看哦
    F2812 FLASH烧写软件,大家都来看看哦-F2812 FLASH programmer software, we all look at看哦
    2022-05-01 02:24:21下载
    积分:1
  • Asimplwebpageonlinedocumentmanagementprocedures
    A simple web page online document management procedures
    2009-05-07 16:16:55下载
    积分:1
  • SSI-ABZ
    说明:  SSI转ABZ信号FPGA程序,测试完全可用(Function of SSI convert to ABZ signal,is available)
    2019-05-19 15:37:48下载
    积分:1
  • an old game ...
    一个挖金子的源码程序,只有机关,欢迎大家扩充-an old game ...
    2022-02-03 05:53:31下载
    积分:1
  • 编程流量老师团队官网培训python基础代码分享
    编程流量老师团队官网培训python基础代码分(Python Basic Code Sharing in Programming Traffic Team Official Website Training)
    2018-12-12 16:04:36下载
    积分:1
  • ofxMyo-master
    说明:  MYO显示EMG信号,打开后为8通道信号(MYO displays EMG signal and 8 channel signal after opening)
    2021-04-06 17:59:02下载
    积分:1
  • 随机森林
    说明:  用N来表示训练用例(样本)的个数,M表示特征数目。 输入特征数目m,用于确定决策树上一个节点的决策结果;其中m应远小于M。 从N个训练用例(样本)中以有放回抽样的方式,取样N次,形成一个训练集(即bootstrap取样),并用未抽到的用例(样本)作预测,评估其误差。 对于每一个节点,随机选择m个特征,决策树上每个节点的决定都是基于这些特征确定的。根据这m个特征,计算其最佳的分裂方式。 每棵树都会完整成长而不会剪枝,这有可能在建完一棵正常树状分类器后会被采用)。(N is used to represent the number of training cases (samples), and M is used to represent the number of features. The number of input features m is used to determine the decision result of a node in the decision tree, where m should be far less than m. From N training cases (samples), n times are sampled in the way of put back sampling to form a training set (i.e. bootstrap sampling), and the unselected cases (samples) are used to predict and evaluate the error. For each node, m features are randomly selected, and the decision of each node in the decision tree is determined based on these features. According to these m characteristics, the best splitting mode is calculated. Each tree will grow completely without pruning, which may be adopted after building a normal tree classifier).)
    2021-01-28 13:47:33下载
    积分:1
  • 696518资源总数
  • 105949会员总数
  • 22今日下载