登录
首页 » matlab » hurstcompute

hurstcompute

于 2020-07-30 发布 文件大小:1KB
0 154
下载积分: 1 下载次数: 3

代码说明:

  利用重标极差的方法来计算hurst指数的MATLAB程序(Hurst index was calculated by R/S method)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • xinhao
    信号盲分离的程序,对盲信号处理的可以作为参考(Blind separation procedures, blind signal processing can be used as reference)
    2009-10-07 21:22:31下载
    积分:1
  • homework
    authorware小例子 1、打台球 2、古诗欣赏 3、投篮 4、移动图形 5、制作一个钟表(authorware small example 1, billiards 2, 3 poetry appreciation, shooting four, five mobile graphics to produce a watch)
    2013-11-15 20:09:30下载
    积分:1
  • 200642520144760194
    雷达数据预测,包括航迹仿真、卡尔曼滤波等 (radar data projections, including track simulation, Kalman filtering)
    2007-07-05 14:04:55下载
    积分:1
  • peitaochengxu
    matlab6.0 清华版课后练习配套程序,经过运行,完全正确,全部通过运行,希望有用!(it is a valuble exercise!)
    2009-02-14 16:21:42下载
    积分:1
  • Structure1_normal
    基于瞬时无功理论的有源电力滤波器的simulink模型,能够很好的滤除电源谐波和无功电流。(The simulink model of the active power filter based on the PID regulator, the filter power harmonics and reactive current.)
    2012-07-01 16:49:30下载
    积分:1
  • sliceomatic
    matlab code for Sliceomatic
    2015-02-07 13:28:09下载
    积分:1
  • huffman
    matlab function that generates huffman code for image
    2014-01-27 03:37:02下载
    积分:1
  • threedeadbeatAPF
    三电平并网变流器控制的仿真模型,包含中点电位及发波(Three level grid connected converter)
    2018-07-23 14:43:35下载
    积分:1
  • huisePID
    用灰色系统理论设计自适应的PID控制!能够实现PID在线调整,能够适应环境的变化(gray design adaptive systems theory of PID control! PID can be achieved online adjustments, be able to adapt to environmental change)
    2006-12-23 15:06:24下载
    积分:1
  • SCSToolboxV2
    将压缩感知用于谱估计中,根据论文谱压缩感知的一些程序(Compressive sensing (CS) is a new approach to simultaneous sensing and compression of sparse and compressible signals based on randomized dimensionality reduction. To recover a signal from its compressive measurements, standard CS algorithms seek the sparsest signal in some discrete basis or frame that agrees with the measurements. A great many applications feature smooth or modulated signals that are frequency sparse and can be modeled as a superposition of a small number of sinusoids. Unfortunately, such signals are only sparse in the discrete Fourier transform (DFT) domain when the sinusoid frequencies live precisely at the center of the DFT bins. When this is not the case, CS recovery performance degrades significantly. In this paper, we introduce a suite of spectral CS (SCS) recovery algorithms for arbitrary frequency sparse signals. The key ingredients are an over-sampled DFT frame, a signal model that inhibits closely spaced sinusoids, and classical sinusoid parameter e)
    2012-06-29 10:10:42下载
    积分:1
  • 696518资源总数
  • 106010会员总数
  • 4今日下载