-
random-numbers
利用三种不同原理产生随机数的方法,种子可以随意变换(Using three different principle methods for generating random Numbers, seeds can be changed at will
)
- 2012-04-23 14:03:57下载
- 积分:1
-
TP_3Amod
Comparison of MUSIC and AR algorithms
- 2013-01-16 02:07:27下载
- 积分:1
-
synchronous
Synchronous motor simulation for performing modern control and other controllers
- 2014-08-16 22:37:37下载
- 积分:1
-
huazhuanlvkongzhiqifinish
用simulink建立的完整的汽车滑转率控制的模型,可以应用在电动汽车转矩分配以及稳定性控制中(With the Simulink established a complete model of the car slip rate control, can be applied in the electric vehicle torque distribution and stability control)
- 2016-05-15 13:26:01下载
- 积分:1
-
feature_reduction
this code reduce the dimentional of feature space using combine sparse matrix+PCA for classification eeg signal. more detail exixst inside the code.
this code tested and work properly
- 2013-07-29 02:54:21下载
- 积分:1
-
deadbeatcontrol
仿真为单相并网逆变器的仿真模型,使用matlab进行搭建,使用无差拍控制的方法,希望进行探讨(Simulation of single-phase grid-connected inverter simulation model using matlab to build, using deadbeat control, and I hope to explore)
- 2015-12-05 10:35:29下载
- 积分:1
-
KL_nmf
基于KL散度的NMF算法的实现,收敛性证明可以参考:Lee D D, Seung H S. Algorithms for Non-negative Matrix Factorization[C]// NIPS. 2000:556--562.(Implementation of NMF algorithm based on KL distance)
- 2018-11-13 17:26:03下载
- 积分:1
-
FACCH
说明: 实现GSM通信的快速接入控制信道(FACCH)的信道编码的MATLAB仿真(achieve rapid GSM Communication Access Control Communication Channel (FACCH) channel coding MATLAB simulation)
- 2006-05-09 20:25:35下载
- 积分:1
-
gaijindexiaobo
为了使小波对图像更好的解析,对小波进行了改进(To make the image better wavelet analysis, wavelet improved)
- 2015-03-19 15:13:23下载
- 积分:1
-
D_star_PathPlanning-master
说明: 近年来,基于启发式的多目标优化技术得到了很大的发展,研究表明该技术比经典方法更实用和高效。有代表性的多目标优化算法主要有NSGA、NSGA-II、SPEA、SPEA2、PAES和PESA等。粒子群优化(PSO)算法是一种模拟社会行为的、基于群体智能的进化技术,以其独特的搜索机理、出色的收敛性能、方便的计算机实现,在工程优化领域得到了广泛的应用,多目标PSO(MOPSO)算法应用到了不同的优化领域[9~11],但存在计算复杂度高、通用性低、收敛性不好等缺点。
多目标粒子群(MOPSO)算法是由CarlosA. Coello Coello等在2004年提出来的(In recent years, heuristic-based multi-objective optimization technology has been greatly developed, and research shows that this technology is more practical and efficient than classical methods. Representative multi-objective optimization algorithms mainly include NSGA, NSGA-II, SPEA, SPEA2, PAES and PESA. Particle Swarm Optimization (PSO) algorithm is an evolutionary technology based on swarm intelligence that simulates social behavior. With its unique search mechanism, excellent convergence performance, and convenient computer implementation, it has been widely used in the field of engineering optimization. The objective PSO (MOPSO) algorithm is applied to different optimization fields [9~11], but it has shortcomings such as high computational complexity, low versatility, and poor convergence.
The multi-objective particle swarm optimization (MOPSO) algorithm was proposed by Carlos A. Coello Coello et al. in 2004)
- 2021-04-17 17:50:13下载
- 积分:1