登录
首页 » Python » 机器学习框架techstar-ai-master

机器学习框架techstar-ai-master

于 2019-02-24 发布 文件大小:133KB
0 184
下载积分: 1 下载次数: 0

代码说明:

  一种大数据机器学习框架的源代码,techstar-ai(The source code of a large data machine learning framework, techstar-ai)

文件列表:

techstar-ai-master, 0 , 2018-02-24
techstar-ai-master\LICENSE, 7651 , 2018-02-24
techstar-ai-master\README.md, 755 , 2018-02-24
techstar-ai-master\classifiers, 0 , 2018-02-24
techstar-ai-master\classifiers\.gitignore, 0 , 2018-02-24
techstar-ai-master\classifiers\EnhancedClassifier.2014.js, 18462 , 2018-02-24
techstar-ai-master\classifiers\EnhancedClassifier.2015.js, 23762 , 2018-02-24
techstar-ai-master\classifiers\EnhancedClassifier.js, 18462 , 2018-02-24
techstar-ai-master\classifiers\bayesian, 0 , 2018-02-24
techstar-ai-master\classifiers\bayesian\LICENSE, 1178 , 2018-02-24
techstar-ai-master\classifiers\bayesian\README.md, 221 , 2018-02-24
techstar-ai-master\classifiers\bayesian\backends, 0 , 2018-02-24
techstar-ai-master\classifiers\bayesian\backends\localStorage.js, 2055 , 2018-02-24
techstar-ai-master\classifiers\bayesian\backends\memory.js, 949 , 2018-02-24
techstar-ai-master\classifiers\bayesian\bayesian.js, 7619 , 2018-02-24
techstar-ai-master\classifiers\decisiontree, 0 , 2018-02-24
techstar-ai-master\classifiers\decisiontree\DecisionTree.js, 4834 , 2018-02-24
techstar-ai-master\classifiers\decisiontree\DecisionTreeDemo.js, 463 , 2018-02-24
techstar-ai-master\classifiers\index.js, 1286 , 2018-02-24
techstar-ai-master\classifiers\kNN, 0 , 2018-02-24
techstar-ai-master\classifiers\kNN\kNN.js, 4092 , 2018-02-24
techstar-ai-master\classifiers\multilabel, 0 , 2018-02-24
techstar-ai-master\classifiers\multilabel\Adaboost.js, 4507 , 2018-02-24
techstar-ai-master\classifiers\multilabel\BinaryRelevance.js, 8048 , 2018-02-24
techstar-ai-master\classifiers\multilabel\BinaryRelevanceDemo.js, 1823 , 2018-02-24
techstar-ai-master\classifiers\multilabel\BinarySegmentation.js, 12792 , 2018-02-24
techstar-ai-master\classifiers\multilabel\CrossLangaugeModelClassifier.js, 5173 , 2018-02-24
techstar-ai-master\classifiers\multilabel\Homer.js, 11429 , 2018-02-24
techstar-ai-master\classifiers\multilabel\MetaLabeler.js, 4828 , 2018-02-24
techstar-ai-master\classifiers\multilabel\MulticlassSegmentation.js, 7415 , 2018-02-24
techstar-ai-master\classifiers\multilabel\PartialClassification.js, 3864 , 2018-02-24
techstar-ai-master\classifiers\multilabel\PassiveAggressiveHash.js, 6927 , 2018-02-24
techstar-ai-master\classifiers\multilabel\ThresholdClassifier.js, 7036 , 2018-02-24
techstar-ai-master\classifiers\multilabel\index.js, 934 , 2018-02-24
techstar-ai-master\classifiers\multilabel\multilabelutils.js, 1877 , 2018-02-24
techstar-ai-master\classifiers\neural, 0 , 2018-02-24
techstar-ai-master\classifiers\neural\NeuralNetwork.js, 659 , 2018-02-24
techstar-ai-master\classifiers\perceptron, 0 , 2018-02-24
techstar-ai-master\classifiers\perceptron\PerceptronHash.js, 5971 , 2018-02-24
techstar-ai-master\classifiers\svm, 0 , 2018-02-24
techstar-ai-master\classifiers\svm\SvmJs.js, 2610 , 2018-02-24
techstar-ai-master\classifiers\svm\SvmJsDemo.js, 583 , 2018-02-24
techstar-ai-master\classifiers\svm\SvmLinear.js, 9965 , 2018-02-24
techstar-ai-master\classifiers\svm\SvmLinearDemo.js, 1196 , 2018-02-24
techstar-ai-master\classifiers\svm\SvmLinearMulticlassDemo.js, 1850 , 2018-02-24
techstar-ai-master\classifiers\svm\SvmPerf.js, 6416 , 2018-02-24
techstar-ai-master\classifiers\svm\SvmPerfDemo.js, 928 , 2018-02-24
techstar-ai-master\classifiers\svm\svmcommon.js, 3374 , 2018-02-24
techstar-ai-master\classifiers\svm\tempfiles, 0 , 2018-02-24
techstar-ai-master\classifiers\svm\tempfiles\.gitignore, 3 , 2018-02-24
techstar-ai-master\classifiers\winnow, 0 , 2018-02-24
techstar-ai-master\classifiers\winnow\WinnowHash.js, 9913 , 2018-02-24
techstar-ai-master\classifiers\winnow\WinnowHashDemo.js, 631 , 2018-02-24
techstar-ai-master\features, 0 , 2018-02-24
techstar-ai-master\features\CollectionOfExtractors.js, 922 , 2018-02-24
techstar-ai-master\features\FeatureLookupTable.js, 4155 , 2018-02-24
techstar-ai-master\features\HypernymExtractor.js, 2097 , 2018-02-24
techstar-ai-master\features\LowerCaseNormalizer.js, 273 , 2018-02-24
techstar-ai-master\features\NGramsFromArray.js, 595 , 2018-02-24
techstar-ai-master\features\NGramsOfLetters.js, 845 , 2018-02-24
techstar-ai-master\features\NGramsOfWords.js, 384 , 2018-02-24
techstar-ai-master\features\README.md, 217 , 2018-02-24
techstar-ai-master\features\RegexpNormalizer.js, 1041 , 2018-02-24
techstar-ai-master\features\RegexpSplitter.js, 1104 , 2018-02-24
techstar-ai-master\features\index.js, 1158 , 2018-02-24
techstar-ai-master\formats, 0 , 2018-02-24
techstar-ai-master\formats\arff.js, 4255 , 2018-02-24
techstar-ai-master\formats\index.js, 132 , 2018-02-24
techstar-ai-master\formats\json.js, 488 , 2018-02-24
techstar-ai-master\formats\svmlight.js, 1393 , 2018-02-24
techstar-ai-master\formats\tsv.js, 444 , 2018-02-24
techstar-ai-master\index.js, 156 , 2018-02-24
techstar-ai-master\package.json, 811 , 2018-02-24
techstar-ai-master\test, 0 , 2018-02-24
techstar-ai-master\test\classifiersTest, 0 , 2018-02-24
techstar-ai-master\test\classifiersTest\BayesianWithFeatureExtractorTest.js, 3069 , 2018-02-24
techstar-ai-master\test\classifiersTest\DecisionTreeTest.js, 1009 , 2018-02-24
techstar-ai-master\test\classifiersTest\NeuralWithFeatureExtractorTest.js, 2328 , 2018-02-24
techstar-ai-master\test\classifiersTest\NeuralWithNormalizerTest.js, 2810 , 2018-02-24
techstar-ai-master\test\classifiersTest\NeuralWithSpellCheckerTest.js, 2157 , 2018-02-24
techstar-ai-master\test\classifiersTest\PerceptronTest.js, 1125 , 2018-02-24
techstar-ai-master\test\classifiersTest\SvmJsTest.js, 1882 , 2018-02-24
techstar-ai-master\test\classifiersTest\SvmMulticlassTest.js, 3458 , 2018-02-24
techstar-ai-master\test\classifiersTest\SvmTest.js, 3312 , 2018-02-24
techstar-ai-master\test\classifiersTest\WinnowExampleTest.js, 2206 , 2018-02-24
techstar-ai-master\test\classifiersTest\WinnowTest.js, 2241 , 2018-02-24
techstar-ai-master\test\classifiersTest\bayesian, 0 , 2018-02-24
techstar-ai-master\test\classifiersTest\bayesian\sync.js, 2584 , 2018-02-24
techstar-ai-master\test\classifiersTest\bayesian\thresholds.js, 1618 , 2018-02-24
techstar-ai-master\test\classifiersTest\kNNTest.js, 3100 , 2018-02-24
techstar-ai-master\test\classifiersTest\multilabel, 0 , 2018-02-24
techstar-ai-master\test\classifiersTest\multilabel\AdaboostTest.js, 1172 , 2018-02-24
techstar-ai-master\test\classifiersTest\multilabel\BinaryRelevanceBayesTest.js, 3318 , 2018-02-24
techstar-ai-master\test\classifiersTest\multilabel\BinaryRelevanceWinnowTest.js, 5467 , 2018-02-24
techstar-ai-master\test\classifiersTest\multilabel\ClassifierWithSplitterTest.js, 2228 , 2018-02-24
techstar-ai-master\test\classifiersTest\multilabel\HomerBinaryRelevanceWinnowTest.js, 9110 , 2018-02-24
techstar-ai-master\test\classifiersTest\multilabel\MetaLabelerLanguageModelTest.js, 3576 , 2018-02-24
techstar-ai-master\test\classifiersTest\multilabel\MetaLabelerSvmTest.js, 4320 , 2018-02-24
techstar-ai-master\test\classifiersTest\multilabel\MetaLabelerWinnowTest.js, 4707 , 2018-02-24
techstar-ai-master\test\classifiersTest\multilabel\MulticlassSegmentationBayesTest.js, 3195 , 2018-02-24

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • wordcount
    实现了hadoop mapreduce模块中的wordcount例程(hadoop mapreduce wordcount)
    2020-06-30 02:20:01下载
    积分:1
  • EnlightenGAN
    说明:  无监督训练的生成对抗网络程序,python版本,生成有关光照不同的图片(Unsupervised training generated against the network program, python version, to generate different pictures about the light)
    2020-03-06 15:28:12下载
    积分:1
  • MAZE
    可以简单地走一个小迷宫,程序尚不完善,希望收到指导意见(can simply walk through a small maze, and the procedure is not perfect yet.)
    2019-06-13 16:05:56下载
    积分:1
  • python 微信机器人代码
    Python实现的微信机器人
    2016-03-17下载
    积分:1
  • 周期性边界条件
    abaqus周期性边界条件代码,可以参考学习(Periodic boundary conditions)
    2021-04-11 17:08:58下载
    积分:1
  • AINDANE-master
    说明:  针对图像亮度不均匀问题,Li Tao与2005年提出的这个算法。其主要用于提升再低照度或者不均匀光照条件下拍摄到的图像亮度。该算法主要由两部分构成:自适应亮度增强模块和自适应对比度增强。(Li Tao and this algorithm proposed in 2005 for the problem of uneven image brightness. It is mainly used to enhance the brightness of images captured under low illumination or uneven illumination. The algorithm is mainly composed of two parts: adaptive brightness enhancement module and adaptive contrast enhancement.)
    2019-10-01 14:15:34下载
    积分:1
  • alien_invasion
    说明:  python项目之外星人入侵,制作小型游戏项目,zszs(alien_invasion,zszszsszszsszszszszzssz)
    2019-11-29 12:20:38下载
    积分:1
  • 《Python+Cookbook》第三版中文v2.0.0
    说明:  用于学习python与cookbook的一本书,适用于python小伙伴(A book for learning Python and cookbook, for Python buddies)
    2020-06-20 12:20:02下载
    积分:1
  • 基于socket和tkinter的python网络聊天室
    基于python socket和tkinter界面库实现的网络聊天室程序,实现登录、注册、在线成员显示、聊天等功能
    2019-06-10下载
    积分:1
  • bch_python-master
    纠错码之BCH编译码python算法说明(BCH decode and encode)
    2020-10-08 15:57:35下载
    积分:1
  • 696516资源总数
  • 106446会员总数
  • 9今日下载