登录
首页 » Python » 机器学习框架techstar-ai-master

机器学习框架techstar-ai-master

于 2019-02-24 发布 文件大小:133KB
0 159
下载积分: 1 下载次数: 0

代码说明:

  一种大数据机器学习框架的源代码,techstar-ai(The source code of a large data machine learning framework, techstar-ai)

文件列表:

techstar-ai-master, 0 , 2018-02-24
techstar-ai-master\LICENSE, 7651 , 2018-02-24
techstar-ai-master\README.md, 755 , 2018-02-24
techstar-ai-master\classifiers, 0 , 2018-02-24
techstar-ai-master\classifiers\.gitignore, 0 , 2018-02-24
techstar-ai-master\classifiers\EnhancedClassifier.2014.js, 18462 , 2018-02-24
techstar-ai-master\classifiers\EnhancedClassifier.2015.js, 23762 , 2018-02-24
techstar-ai-master\classifiers\EnhancedClassifier.js, 18462 , 2018-02-24
techstar-ai-master\classifiers\bayesian, 0 , 2018-02-24
techstar-ai-master\classifiers\bayesian\LICENSE, 1178 , 2018-02-24
techstar-ai-master\classifiers\bayesian\README.md, 221 , 2018-02-24
techstar-ai-master\classifiers\bayesian\backends, 0 , 2018-02-24
techstar-ai-master\classifiers\bayesian\backends\localStorage.js, 2055 , 2018-02-24
techstar-ai-master\classifiers\bayesian\backends\memory.js, 949 , 2018-02-24
techstar-ai-master\classifiers\bayesian\bayesian.js, 7619 , 2018-02-24
techstar-ai-master\classifiers\decisiontree, 0 , 2018-02-24
techstar-ai-master\classifiers\decisiontree\DecisionTree.js, 4834 , 2018-02-24
techstar-ai-master\classifiers\decisiontree\DecisionTreeDemo.js, 463 , 2018-02-24
techstar-ai-master\classifiers\index.js, 1286 , 2018-02-24
techstar-ai-master\classifiers\kNN, 0 , 2018-02-24
techstar-ai-master\classifiers\kNN\kNN.js, 4092 , 2018-02-24
techstar-ai-master\classifiers\multilabel, 0 , 2018-02-24
techstar-ai-master\classifiers\multilabel\Adaboost.js, 4507 , 2018-02-24
techstar-ai-master\classifiers\multilabel\BinaryRelevance.js, 8048 , 2018-02-24
techstar-ai-master\classifiers\multilabel\BinaryRelevanceDemo.js, 1823 , 2018-02-24
techstar-ai-master\classifiers\multilabel\BinarySegmentation.js, 12792 , 2018-02-24
techstar-ai-master\classifiers\multilabel\CrossLangaugeModelClassifier.js, 5173 , 2018-02-24
techstar-ai-master\classifiers\multilabel\Homer.js, 11429 , 2018-02-24
techstar-ai-master\classifiers\multilabel\MetaLabeler.js, 4828 , 2018-02-24
techstar-ai-master\classifiers\multilabel\MulticlassSegmentation.js, 7415 , 2018-02-24
techstar-ai-master\classifiers\multilabel\PartialClassification.js, 3864 , 2018-02-24
techstar-ai-master\classifiers\multilabel\PassiveAggressiveHash.js, 6927 , 2018-02-24
techstar-ai-master\classifiers\multilabel\ThresholdClassifier.js, 7036 , 2018-02-24
techstar-ai-master\classifiers\multilabel\index.js, 934 , 2018-02-24
techstar-ai-master\classifiers\multilabel\multilabelutils.js, 1877 , 2018-02-24
techstar-ai-master\classifiers\neural, 0 , 2018-02-24
techstar-ai-master\classifiers\neural\NeuralNetwork.js, 659 , 2018-02-24
techstar-ai-master\classifiers\perceptron, 0 , 2018-02-24
techstar-ai-master\classifiers\perceptron\PerceptronHash.js, 5971 , 2018-02-24
techstar-ai-master\classifiers\svm, 0 , 2018-02-24
techstar-ai-master\classifiers\svm\SvmJs.js, 2610 , 2018-02-24
techstar-ai-master\classifiers\svm\SvmJsDemo.js, 583 , 2018-02-24
techstar-ai-master\classifiers\svm\SvmLinear.js, 9965 , 2018-02-24
techstar-ai-master\classifiers\svm\SvmLinearDemo.js, 1196 , 2018-02-24
techstar-ai-master\classifiers\svm\SvmLinearMulticlassDemo.js, 1850 , 2018-02-24
techstar-ai-master\classifiers\svm\SvmPerf.js, 6416 , 2018-02-24
techstar-ai-master\classifiers\svm\SvmPerfDemo.js, 928 , 2018-02-24
techstar-ai-master\classifiers\svm\svmcommon.js, 3374 , 2018-02-24
techstar-ai-master\classifiers\svm\tempfiles, 0 , 2018-02-24
techstar-ai-master\classifiers\svm\tempfiles\.gitignore, 3 , 2018-02-24
techstar-ai-master\classifiers\winnow, 0 , 2018-02-24
techstar-ai-master\classifiers\winnow\WinnowHash.js, 9913 , 2018-02-24
techstar-ai-master\classifiers\winnow\WinnowHashDemo.js, 631 , 2018-02-24
techstar-ai-master\features, 0 , 2018-02-24
techstar-ai-master\features\CollectionOfExtractors.js, 922 , 2018-02-24
techstar-ai-master\features\FeatureLookupTable.js, 4155 , 2018-02-24
techstar-ai-master\features\HypernymExtractor.js, 2097 , 2018-02-24
techstar-ai-master\features\LowerCaseNormalizer.js, 273 , 2018-02-24
techstar-ai-master\features\NGramsFromArray.js, 595 , 2018-02-24
techstar-ai-master\features\NGramsOfLetters.js, 845 , 2018-02-24
techstar-ai-master\features\NGramsOfWords.js, 384 , 2018-02-24
techstar-ai-master\features\README.md, 217 , 2018-02-24
techstar-ai-master\features\RegexpNormalizer.js, 1041 , 2018-02-24
techstar-ai-master\features\RegexpSplitter.js, 1104 , 2018-02-24
techstar-ai-master\features\index.js, 1158 , 2018-02-24
techstar-ai-master\formats, 0 , 2018-02-24
techstar-ai-master\formats\arff.js, 4255 , 2018-02-24
techstar-ai-master\formats\index.js, 132 , 2018-02-24
techstar-ai-master\formats\json.js, 488 , 2018-02-24
techstar-ai-master\formats\svmlight.js, 1393 , 2018-02-24
techstar-ai-master\formats\tsv.js, 444 , 2018-02-24
techstar-ai-master\index.js, 156 , 2018-02-24
techstar-ai-master\package.json, 811 , 2018-02-24
techstar-ai-master\test, 0 , 2018-02-24
techstar-ai-master\test\classifiersTest, 0 , 2018-02-24
techstar-ai-master\test\classifiersTest\BayesianWithFeatureExtractorTest.js, 3069 , 2018-02-24
techstar-ai-master\test\classifiersTest\DecisionTreeTest.js, 1009 , 2018-02-24
techstar-ai-master\test\classifiersTest\NeuralWithFeatureExtractorTest.js, 2328 , 2018-02-24
techstar-ai-master\test\classifiersTest\NeuralWithNormalizerTest.js, 2810 , 2018-02-24
techstar-ai-master\test\classifiersTest\NeuralWithSpellCheckerTest.js, 2157 , 2018-02-24
techstar-ai-master\test\classifiersTest\PerceptronTest.js, 1125 , 2018-02-24
techstar-ai-master\test\classifiersTest\SvmJsTest.js, 1882 , 2018-02-24
techstar-ai-master\test\classifiersTest\SvmMulticlassTest.js, 3458 , 2018-02-24
techstar-ai-master\test\classifiersTest\SvmTest.js, 3312 , 2018-02-24
techstar-ai-master\test\classifiersTest\WinnowExampleTest.js, 2206 , 2018-02-24
techstar-ai-master\test\classifiersTest\WinnowTest.js, 2241 , 2018-02-24
techstar-ai-master\test\classifiersTest\bayesian, 0 , 2018-02-24
techstar-ai-master\test\classifiersTest\bayesian\sync.js, 2584 , 2018-02-24
techstar-ai-master\test\classifiersTest\bayesian\thresholds.js, 1618 , 2018-02-24
techstar-ai-master\test\classifiersTest\kNNTest.js, 3100 , 2018-02-24
techstar-ai-master\test\classifiersTest\multilabel, 0 , 2018-02-24
techstar-ai-master\test\classifiersTest\multilabel\AdaboostTest.js, 1172 , 2018-02-24
techstar-ai-master\test\classifiersTest\multilabel\BinaryRelevanceBayesTest.js, 3318 , 2018-02-24
techstar-ai-master\test\classifiersTest\multilabel\BinaryRelevanceWinnowTest.js, 5467 , 2018-02-24
techstar-ai-master\test\classifiersTest\multilabel\ClassifierWithSplitterTest.js, 2228 , 2018-02-24
techstar-ai-master\test\classifiersTest\multilabel\HomerBinaryRelevanceWinnowTest.js, 9110 , 2018-02-24
techstar-ai-master\test\classifiersTest\multilabel\MetaLabelerLanguageModelTest.js, 3576 , 2018-02-24
techstar-ai-master\test\classifiersTest\multilabel\MetaLabelerSvmTest.js, 4320 , 2018-02-24
techstar-ai-master\test\classifiersTest\multilabel\MetaLabelerWinnowTest.js, 4707 , 2018-02-24
techstar-ai-master\test\classifiersTest\multilabel\MulticlassSegmentationBayesTest.js, 3195 , 2018-02-24

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • D2DRelayAssistedCellularNetworks-master
    一个基于python语言的D2D信道分配编程(A D2D Channel Allocation Programming Based on Python Language)
    2019-03-20 21:15:24下载
    积分:1
  • python机器人对话
    说明:  使用API接口,实现了机器人自动对话程序,简单的AI应用程序。(Robot Dialogue Program, Simple AI Application Program)
    2020-06-16 02:40:02下载
    积分:1
  • FENICS中的相场断裂实现
    【实例简介】
    2021-07-30 00:31:00下载
    积分:1
  • 群智能算法源代码 HGWO(DE-GWO)
    说明:  群智能算法源代码,如蚁群,粒子群,灰狼等(a gond python for study GWO)
    2019-12-26 16:14:07下载
    积分:1
  • readVector
    地理信息系统(gis)行业,使用ogr,gdal读写矢量文件(Use ogr, GDAL to read and write vector files)
    2020-12-20 09:39:09下载
    积分:1
  • CNN -- 基于tensorflow的LeNet-5实现
     1. eclipse上的python项目  2. 基于tensorflow,实现了LeNet-5网络模型,包括对MNIST数据集的预处理、模型搭建和对模型的训练、验证
    2020-11-30下载
    积分:1
  • Python网络数据采集
    说明:  python网络数据采集 中文版 包括:第一部分创建爬虫、第二部分高级数据采集、(web scraping with python)
    2020-05-02 13:17:23下载
    积分:1
  • 层次分析法
    层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。(It refers to the decision-making method that divides the elements that are always related to decision-making into objectives, criteria, schemes, etc. on the basis of which qualitative and quantitative analysis can be carried out)
    2020-06-25 12:40:02下载
    积分:1
  • dataset-master
    深度学习进行调制识别的数据集,用于卷积神经网络(dataset for cnn include generate_RML2016.04c and generate_RML2016.10a)
    2020-06-20 09:00:01下载
    积分:1
  • LITURATURE SURVEY
    说明:  To completely remove inter-cell interference, SIC is applied by the receivers at the user side. The technology can separate these data streams for corresponding users The interference cancellation technology is of importance for hybrid unicast/multicast service system performance
    2019-12-26 16:24:13下载
    积分:1
  • 696518资源总数
  • 105885会员总数
  • 31今日下载