登录
首页 » matlab » fai-km63

fai-km63

于 2017-03-30 发布 文件大小:6KB
0 180
下载积分: 1 下载次数: 1

代码说明:

  搭建OFDM通信系统的框架,Relief计算分类权重,包含光伏电池模块、MPPT模块、BOOST模块、逆变模块。( Build a framework OFDM communication system, Relief computing classification weight, PV modules contain, MPPT module, BOOST module, inverter module.)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • encoder-decoder
    用matlab算术码编码译码 效果一般压缩比例1:2(Arithmetic code encoding decoding)
    2012-06-24 00:00:13下载
    积分:1
  • Bee-algorithm5
    Bee algorithmBee algorithmBee algorithm(1)信号处理、(2)人工智能与模式识别、(3)神经网络、(4)图像处理、(5)数据挖掘、(Bee algorithm3)
    2013-09-10 10:21:12下载
    积分:1
  • gaijinzidaxiebojiance2
    基于瞬时无功功率理论的谐波检测ip-iq改进方法,值得学习(Based on instantaneous reactive power theory, ip-iq improvement of harmonic detection method, it is worth learning)
    2012-09-05 11:21:40下载
    积分:1
  • Offline-Model
    主成分分析离线功能实现和用法,这里是源代码,代码详细,数据齐全(Principal component analysis offline implementation and usage, here is the source code, the code in detail, the data is complete)
    2014-12-02 13:18:51下载
    积分:1
  • Minimum-Risk-Bayes-classifier
    这是模式识别中最小风险Bayes分类器的设计方案。在参考例程的情况下,自行完善了在一定先验概率的条件下,男、女错误率和总错误率的统计,放入各个数组当中。 全部程序由主函数、最大似然估计求取概率密度子函数、最小错误率贝叶斯分类器决策子函数三块组成。 调用最大似然估计求取概率密度子函数时,第一步获取样本数据,存储为矩阵;第二步对矩阵的每一行求和,并除以样本总数N,得到平均值向量;第三步是应用公式(3-43)采用矩阵运算和循环控制语句,求得协方差矩阵;第四步通过协方差矩阵求得方差和相关系数,从而得到概率密度函数。 调用最小风险贝叶斯分类器决策子函数时,根据先验概率,再根据自行给出的5*5的决策表,通过比较概率大小判断一个体重身高二维向量代表的人是男是女,放入决策数组中。 主函数第一步打开“MAIL.TXT”和“FEMALE.TXT”文件,并调用最大似然估计求取概率密度子函数,对分类器进行训练。第二步打开“test2.txt”,调用最小风险贝叶斯分类器决策子函数,然后再将数组中逐一与已知性别的数据比较,就可以得到在一定先验概率条件下,决策表中不同决策的错误率的统计。 (This is a pattern recognition classifier minimum risk Bayes design .In reference to the case of routine , self- improvement in a certain a priori probability conditions, male , female and total error rate error rate statistics , into which each array . All programs from the main function , maximum likelihood estimation subroutine strike probability density , the minimum error rate Bayesian classifier composed of decision-making three subfunctions . Strike called maximum likelihood estimate probability density subroutine , the first step to obtain the sample data , stored as a matrix the second step of the matrix, each row sum , and divided by the total number of samples N, be the average vector The third step is the application of the formula ( 3-43 ) using matrix and loop control statements , obtain the covariance matrix fourth step through the variance-covariance matrix and correlation coefficient obtained , resulting in the probability density function . Bayesian classifier )
    2012-02-02 20:37:04下载
    积分:1
  • 2006MAY19-ME-DSP-TS1
    说明:  基于超低功耗微型心电听诊仪的设计.pdf(2006MAY19 ME DSP TS1.pdf)
    2011-02-21 15:53:25下载
    积分:1
  • comparison_21022013
    COMPARISON OF DIFFERENT MODULATION SCHEMES
    2013-11-14 16:30:45下载
    积分:1
  • lasso
    Lasso问题用ADMM,BCD,cvx方法实现(The algorithms to solve lasso problem)
    2020-08-12 14:48:26下载
    积分:1
  • GPS_toolbox
    GPS software toolbox for GPS receiver development
    2008-07-16 16:52:35下载
    积分:1
  • back_segment
    基于matlab平台开发,实现针对静态图像,或者视频帧的背景区域操作(Matlab-based platform development and against static images, or video frame the background of regional operations)
    2007-03-21 14:18:17下载
    积分:1
  • 696518资源总数
  • 106148会员总数
  • 10今日下载