登录
首页 » Visual C++ » virtual-view-code-CPP

virtual-view-code-CPP

于 2016-03-16 发布 文件大小:18758KB
0 177
下载积分: 1 下载次数: 19

代码说明:

  这是一个从两个以知的参考视点的彩色图和深度图来合成一个虚拟视点的彩色图和深度图的程序。(This is one of the two known reference to the viewpoint of the color and depth charts to synthesize a virtual viewpoint of color and depth charts of the program.)

文件列表:

虚拟视点代码
............\Desktop
............\.......\experientdata
............\.......\.............\3DVideos-distrib
............\.......\.............\................\MSR3DVideo-Breakdancers
............\.......\.............\................\.......................\calibParams-breakdancers.txt,1714,2015-10-25
............\.......\.............\................\.......................\cam0


............\.......\.............\................\.......................\cam1

............\.......\.............\................\.......................\cam2


............\.......\.............\experiencePictrue



............\testdepthimage
............\..............\Debug
............\..............\.....\testdepthimage.pdb,19456,2015-12-26
............\..............\testdepthimage
............\..............\..............\Debug
............\..............\..............\.....\test.obj,241506,2015-12-26
............\..............\..............\.....\testdepthimage.Build.CppClean.log,853,2015-12-26
............\..............\..............\.....\testdepthimage.log,1988,2015-12-26
............\..............\..............\.....\testdepthimage.tlog
............\..............\..............\.....\...................\CL.read.1.tlog,27506,2015-12-26
............\..............\..............\.....\...................\CL.write.1.tlog,428,2015-12-26
............\..............\..............\.....\...................\link-cvtres.read.1.tlog,2,2015-12-26
............\..............\..............\.....\...................\link-cvtres.write.1.tlog,2,2015-12-26
............\..............\..............\.....\...................\link-rc.read.1.tlog,2,2015-12-26
............\..............\..............\.....\...................\link-rc.write.1.tlog,2,2015-12-26
............\..............\..............\.....\...................\link.read.1.tlog,2,2015-12-26
............\..............\..............\.....\...................\link.write.1.tlog,2,2015-12-26
............\..............\..............\.....\...................\testdepthimage.lastbuildstate,160,2015-12-26
............\..............\..............\.....\...................\unsuccessfulbuild,0,2015-12-26
............\..............\..............\.....\vc120.idb,1043456,2015-12-26
............\..............\..............\.....\vc120.pdb,1617920,2015-12-26
............\..............\..............\depth.txt,1370003,2015-12-14
............\..............\..............\depthimage.cpp,2669,2015-10-31
............\..............\..............\test.cpp,13801,2016-01-04
............\..............\..............\testdepthimage.vcxproj,9227,2015-12-10
............\..............\..............\testdepthimage.vcxproj.filters,945,2015-11-05
............\..............\..............\testdepthimage.vcxproj.user,165,2015-11-28
............\..............\..............\x64
............\..............\..............\...\Debug
............\..............\..............\...\.....\test.obj,335120,2016-01-04
............\..............\..............\...\.....\testdepthimage.Build.CppClean.log,901,2016-01-04
............\..............\..............\...\.....\testdepthimage.log,1913,2016-01-04
............\..............\..............\...\.....\testdepthimage.tlog
............\..............\..............\...\.....\...................\CL.read.1.tlog,10102,2016-01-04
............\..............\..............\...\.....\...................\CL.write.1.tlog,452,2016-01-04
............\..............\..............\...\.....\...................\link.read.1.tlog,5424,2016-01-04
............\..............\..............\...\.....\...................\link.write.1.tlog,438,2016-01-04
............\..............\..............\...\.....\...................\testdepthimage.lastbuildstate,158,2016-01-04
............\..............\..............\...\.....\vc120.idb,560128,2016-01-04
............\..............\..............\...\.....\vc120.pdb,1347584,2016-01-04
............\..............\testdepthimage.sdf,50003968,2016-01-04
............\..............\testdepthimage.sln,1342,2015-10-29
............\..............\x64
............\..............\...\Debug
............\..............\...\.....\testdepthimage.exe,98816,2016-01-04
............\..............\...\.....\testdepthimage.ilk,512112,2016-01-04
............\..............\...\.....\testdepthimage.pdb,1657856,2016-01-04
............\使用方法.docx,14930,2016-01-04

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • DetectionofTonguesCrackBasedonAdaptiveThreshold
    摘 要:舌象中的裂纹是中医舌诊中的重要内容。由于拍摄条件的不同,舌象质量有较大差异,传统的阈值选取方法并不 适用。文中提出一种舌象裂纹检测的自适应阈值选择方法。该方法利用舌象的L 3 a 3 b 色彩特征及区域的分裂- 合并, 对舌象进行区域分割,自适应地选取舌中部区域的色彩值作为阈值,对整个舌象进行裂纹提取。经验证,本方案对不同的 舌象能较好地提取出裂纹,实现舌象裂纹诊断的客观化。(Tongue’ s crack is a very important part of herbalist doctor diagnosis. For the different screen conditions , there are many differ2 ences on the tongue’ s quality. It is not effective to use the t raditional threshold ext raction algorithm. In order to solve this problem , pro2 pose a new adaptive threshold algorithm. Present the segmentation of the image of tongue by using the feature on tongue in the L 3 a 3 b color space and the split- combining algorithm. Then use the threshold , which is the color value ext racted automatically in the middle of the tongue , to detect the crack of the whole tongue. The experiments show that this approach is able to distill the crack effectively to different tongue images , and achieve the objectivity of the diagnosis based on the tongue’ s crack.)
    2020-08-27 19:58:13下载
    积分:1
  • 三维数据的法矢量 NormalAdjust
    计算三维数据的法矢量并进行调整,里面包括了自己做的实验数据和结果(Three-dimensional data, vector calculation method and make adjustments, which includes the make their own experimental data and results)
    2020-07-28 19:28:39下载
    积分:1
  • LossCompression
    C语言编程,利用矢量量化思想进行图像有损压缩和解压缩(C language programming, using vector quantization thoughts lossy image compression and decompression)
    2016-05-24 21:50:39下载
    积分:1
  • ElizziqunMATTd
    边缘检测 的 matlab粒子群程序序源码 ,希望对你有所帮助 (Edge detection matlab particle swarm procedure sequence source, you want to help)
    2012-07-29 23:52:42下载
    积分:1
  • VCgongchenganli
    说明:  VC的一些工程案例,包括车牌识别,人脸识别,图像处理基本操作等(car license recognization system)
    2010-04-14 16:25:39下载
    积分:1
  • SCU_S082167
    《基于计算机视觉的普适性三维重建方法研究》源代码,实现了一种将二维图像重建成三维场景的方法。(Source code of <General Sense Three-Dimension Reconstruction Research Based on Computer Vision>, a technique which can convert 2D images into 3D sence.)
    2020-11-30 10:59:28下载
    积分:1
  • CvvImage
    基于OPENCV的数字图像处理的Cvvimage库,(CvvImage Class in image process )
    2014-06-26 08:49:43下载
    积分:1
  • FINAL
    图像拼接!!此为本人的毕业设计源码,能完整远行,希望能对大家起到帮助。强烈鄙视那些为了骗取下载数而上载一些无关紧要代码甚至是编译错误一堆的卑鄙小人(Image mosaic! ! This is my graduation project source code can be a complete separation, I hope everyone can help. Strongly despise those who cheat in order to download and upload some irrelevant code compiler error or even a bunch of despicable villains)
    2020-06-26 04:00:02下载
    积分:1
  • jiang
    VC图像编辑软件 就要卷积模糊和卷积模糊加噪 以不同方法(大于等于2)实现图像的模糊效果(局部或全局)。并以BMP格式存储。(soft)
    2010-03-07 13:57:45下载
    积分:1
  • EDLines 快速直线检测算子
    EDLines是一种快速直线检测算子,2012年在ICCV上提出,也是目前处理直线检测最快的算法之一,该算法包含三个步骤:(1)边缘提取:利用Edge Drawing (ED)算法[28,29]从灰度图像中提取边缘片段;(2)线段检测:利用最小二乘法提取直线段;(3)线段确认:遵循Helmholtz定律,从已提取的直线段中摒弃虚假线段。EDLines算法的优越性得益于Edge Drawing (ED)算法能够从灰度图像中准确、快速、稳定地提取出光滑、完整的边缘片段。Edge Drawing (ED)算法包含以下步骤: (1)采用size=5*5,σ=1的高斯核对灰度图像进行平滑滤波,去除噪声; (2)采用一种常用的梯度算子,如Prewitt、Sobel或Scharr等计算平滑后图像中每个像素点的梯度幅度和梯度方向; (3)将梯度图中邻域内幅度最大的像素点标记为锚点,这些锚点成为图像边缘点(edge elements)的概率很大; (4)将相邻的锚点连接成边缘线。从一个锚点起始,ED利用相邻像素的梯度幅度和方向在梯度为最大值的锚点之间游走。 (Edge Drawing (ED) is our recently-proposed, novel, fast edge detection algorithm. What makes ED stand out the existing edge detectors, e.g., Canny, is the following: While the other edge detectors give out a binary edge image as output, where the etected edge pixels are usually independent, discontinuous entities ED produces a set of edge segments, which are clean, contiguous, i.e., connected, chains of edge pixels. Thus, while the output of the other edge detectors requires urther processing to generate potential object boundaries, which may not even be possible or result in inaccuracies ED not only produces perfectly connected object boundaries by default, but it also achieves this in blazing speed compared to other edge detector.)
    2021-03-22 16:29:16下载
    积分:1
  • 696518资源总数
  • 105540会员总数
  • 37今日下载