登录
首页 » matlab » moulation classification

moulation classification

于 2018-05-11 发布 文件大小:195KB
0 230
下载积分: 1 下载次数: 14

代码说明:

  基于瞬时特征的有关MASK、MPSK、MFSK的调制识别,程序都可以运行出来(Based on the instantaneous characteristics of MASK, MPSK, MFSK modulation recognition, the program can be run out.)

文件列表:

moulation classification, 0 , 2018-05-07
moulation classification\classification rate simulink, 0 , 2018-05-07
moulation classification\classification rate simulink\ask2.m, 373 , 2018-05-07
moulation classification\classification rate simulink\ask4.m, 310 , 2018-05-07
moulation classification\classification rate simulink\ask8.m, 239 , 2018-05-07
moulation classification\classification rate simulink\A_func.m, 50 , 2018-05-07
moulation classification\classification rate simulink\dif.m, 111 , 2018-05-07
moulation classification\classification rate simulink\f0_func.m, 65 , 2018-05-07
moulation classification\classification rate simulink\fai0_func.m, 461 , 2018-05-07
moulation classification\classification rate simulink\fsk2.m, 532 , 2018-05-07
moulation classification\classification rate simulink\fsk4.m, 661 , 2018-05-07
moulation classification\classification rate simulink\fsk8.m, 1011 , 2018-05-07
moulation classification\classification rate simulink\intrduction.txt, 45 , 2018-05-07
moulation classification\classification rate simulink\judge.m, 1097 , 2018-05-07
moulation classification\classification rate simulink\main.m, 2767 , 2018-05-07
moulation classification\classification rate simulink\M_func.m, 81 , 2018-05-07
moulation classification\classification rate simulink\psk2.m, 321 , 2018-05-07
moulation classification\classification rate simulink\psk4.m, 516 , 2018-05-07
moulation classification\classification rate simulink\psk8.m, 916 , 2018-05-07
moulation classification\classification rate simulink\qam16.m, 1824 , 2018-05-07
moulation classification\classification rate simulink\right recognition rate.bmp, 236278 , 2018-05-07
moulation classification\introduction.txt, 325 , 2018-05-07
moulation classification\key feature simulink, 0 , 2018-05-07
moulation classification\key feature simulink\1.bmp, 705654 , 2018-05-07
moulation classification\key feature simulink\2.bmp, 705654 , 2018-05-07
moulation classification\key feature simulink\ask2.m, 373 , 2018-05-07
moulation classification\key feature simulink\ask4.m, 310 , 2018-05-07
moulation classification\key feature simulink\ask8.m, 239 , 2018-05-07
moulation classification\key feature simulink\A_func.m, 50 , 2018-05-07
moulation classification\key feature simulink\dif.m, 111 , 2018-05-07
moulation classification\key feature simulink\f0_func.m, 65 , 2018-05-07
moulation classification\key feature simulink\fai0_func.m, 461 , 2018-05-07
moulation classification\key feature simulink\fig.m, 462 , 2018-05-07
moulation classification\key feature simulink\fsk2.m, 532 , 2018-05-07
moulation classification\key feature simulink\fsk4.m, 661 , 2018-05-07
moulation classification\key feature simulink\fsk8.m, 1011 , 2018-05-07
moulation classification\key feature simulink\intrduction.txt, 74 , 2018-05-07
moulation classification\key feature simulink\judge.m, 1097 , 2018-05-07
moulation classification\key feature simulink\M1.bmp, 236278 , 2018-05-07
moulation classification\key feature simulink\M1_fig.m, 1285 , 2018-05-07
moulation classification\key feature simulink\M1_func.m, 68 , 2018-05-07
moulation classification\key feature simulink\M2.bmp, 236278 , 2018-05-07
moulation classification\key feature simulink\M2_fig.m, 584 , 2018-05-07
moulation classification\key feature simulink\M2_func.m, 82 , 2018-05-07
moulation classification\key feature simulink\M3.bmp, 236278 , 2018-05-07
moulation classification\key feature simulink\M3_fig.m, 429 , 2018-05-07
moulation classification\key feature simulink\M3_func.m, 96 , 2018-05-07
moulation classification\key feature simulink\main.m, 2667 , 2018-05-07
moulation classification\key feature simulink\mf1-1.bmp, 705654 , 2018-05-07
moulation classification\key feature simulink\Mf1.bmp, 236278 , 2018-05-07
moulation classification\key feature simulink\Mf1_fig.m, 1162 , 2018-05-07
moulation classification\key feature simulink\Mf1_func.m, 83 , 2018-05-07
moulation classification\key feature simulink\mf2-1.bmp, 705654 , 2018-05-07
moulation classification\key feature simulink\Mf2.bmp, 236278 , 2018-05-07
moulation classification\key feature simulink\Mf2_fig.m, 709 , 2018-05-07
moulation classification\key feature simulink\Mf2_func.m, 100 , 2018-05-07
moulation classification\key feature simulink\mf3-1.bmp, 705654 , 2018-05-07
moulation classification\key feature simulink\Mf3.bmp, 236278 , 2018-05-07
moulation classification\key feature simulink\Mf3_fig.m, 570 , 2018-05-07
moulation classification\key feature simulink\Mf3_func.m, 108 , 2018-05-07
moulation classification\key feature simulink\mp1-1.bmp, 705654 , 2018-05-07
moulation classification\key feature simulink\Mp1.bmp, 236278 , 2018-05-07
moulation classification\key feature simulink\Mp1_fig.m, 606 , 2018-05-07
moulation classification\key feature simulink\Mp1_func.m, 105 , 2018-05-07
moulation classification\key feature simulink\mp2-1.bmp, 705654 , 2018-05-07
moulation classification\key feature simulink\Mp2.bmp, 236278 , 2018-05-07
moulation classification\key feature simulink\Mp2_fig.m, 451 , 2018-05-07
moulation classification\key feature simulink\Mp2_func.m, 113 , 2018-05-07
moulation classification\key feature simulink\M_func.m, 81 , 2018-05-07
moulation classification\key feature simulink\psk2.m, 321 , 2018-05-07
moulation classification\key feature simulink\psk4.m, 516 , 2018-05-07
moulation classification\key feature simulink\psk8.m, 916 , 2018-05-07
moulation classification\key feature simulink\qam16.m, 1824 , 2018-05-07
moulation classification\key feature simulink\识别.fig, 11086 , 2018-05-07
moulation classification\untitled.bmp, 236278 , 2018-05-07

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Artificial-Intelligence-pneumonia
    利用朴实贝叶斯方法求解有关肺炎的问题。肺炎对应有四个特征:发烧、疼痛、咳嗽和血细胞异常,当确定了患肺炎与否时,四个特征条件独立。假设患肺炎与否和四个特征都可表示为Ture和False。 根据pneumonia.tex文件中的数据(500行,每行前4个数对应4个特征变量,第5个数对应患肺炎是否为真,以0表示False,1表示Ture),编写Matlab 程序 maininference.m,从example.txt中读取病人的症状信息(0表示False,1表示True,-1表示not given),并计算对应的患肺炎的可能性。所给的信息按发烧、疼痛、咳嗽、血细胞异常的顺序排列。将计算结果保存在answer.txt中。(Simple Bayesian method to solve the question of pneumonia. Pneumonia corresponding four characteristics: fever, pain, cough and blood cell abnormalities, determine the risk of pneumonia or not, the four characteristics of conditional independence. Assumptions suffering from pneumonia or not and four features can be represented as Ture and False. According to the data pneumonia.tex file (500 lines, each line of the first four numbers corresponding to the four characteristic variables, number 5 corresponds to the risk of pneumonia is true, 0 represents False, said Ture), to write Matlab program maininference. m from example.txt read the information of the patient' s symptoms (0 = False, said True, the-1 indicates not given), and to calculate corresponding to the likelihood of suffering from pneumonia. The information given by the order of fever, pain, cough, blood cell abnormalities. The calculated results is be saved in answer.txt.)
    2013-01-04 23:27:12下载
    积分:1
  • MATLAB-workshop-lecture-1
    matlab working instustion very good ppt
    2014-01-13 21:19:05下载
    积分:1
  • 5
    说明:  用频率采样法设计具有线性相位的FIR低通滤波器(Design of FIR low pass filter with linear phase by frequency sampling)
    2018-03-13 18:32:24下载
    积分:1
  • GRNN
    说明:  MATLAB 神经网络源码GRNN的数据预测-基于广义回归神经网络货运量预测(MATLAB neural network source code GRNN data forecast-based generalized regression neural network freight volume forecast)
    2020-05-08 08:57:05下载
    积分:1
  • 69107
    通信原理课程设计利用matlab中的simlingk做的伪随机码的设计(Communication Theory course design using matlab in simlingk do pseudo-random code design)
    2011-06-19 17:48:00下载
    积分:1
  • Graphical-tree-network-flow
    采用MATLAB实现图形化树状网潮流计算程序开发(Graphical tree network flow calculation program development)
    2011-10-12 15:24:14下载
    积分:1
  • Extract-I(q)-vs
    This function requires the input of a 2D matrix containing intensity values (double) corresponding to the x-ray scattering image (‘imagemat’). It returns I(q) vs. q in matrix ‘IvsQ’. It loads the experimental parameters saved in A.1. Start and end pixel counts can be adjusted as needed. It is important to resize matrices ‘allpixels’ and ‘sortedpix’ accordingly.
    2014-11-28 23:22:48下载
    积分:1
  • lISTtOPgRAVITY
    Basic top gravity scenario, nothing fancy. Items do not fill the screen.
    2014-01-21 12:28:38下载
    积分:1
  • abbr_c0e75c1f46b59b5e2372e10c64
    说明:  matlab关于扩展卡尔曼的源程序,有不足之处还请多多指教(matlab on the extended Kalman of the source, there are also shortcomings to a lot of advice)
    2011-03-22 16:33:04下载
    积分:1
  • MMSEaaLCMV
    本代码包括经典的MMSE方法和LCMV方法的推导,并包括两种方法的仿真,很有用!(The code includes the derivation of the classical methods and LCMV MMSE method, and includes simulation of the two methods, very useful!)
    2013-12-07 11:25:06下载
    积分:1
  • 696518资源总数
  • 106155会员总数
  • 8今日下载