登录
首页 » matlab » CNN

CNN

于 2018-05-11 发布 文件大小:14402KB
0 151
下载积分: 1 下载次数: 48

代码说明:

  CNN卷积神经网络,能以高速将图像精确到的分类,给力。(CNN convolutional neural network with high speed, accurate to classify images, awesome.)

文件列表:

DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6, 0 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\.travis.yml, 249 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CAE, 0 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CAE\caeapplygrads.m, 1219 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CAE\caebbp.m, 917 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CAE\caebp.m, 1011 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CAE\caedown.m, 259 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CAE\caeexamples.m, 754 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CAE\caenumgradcheck.m, 3618 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CAE\caesdlm.m, 845 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CAE\caetrain.m, 1148 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CAE\caeup.m, 489 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CAE\max3d.m, 173 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CAE\scaesetup.m, 1937 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CAE\scaetrain.m, 270 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CNN, 0 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CNN\cnnapplygrads.m, 575 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CNN\cnnbp.m, 2141 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CNN\cnnff.m, 1774 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CNN\cnnnumgradcheck.m, 3430 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CNN\cnnsetup.m, 2020 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CNN\cnntest.m, 193 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CNN\cnntrain.m, 845 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CONTRIBUTING.md, 544 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\DBN, 0 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\DBN\dbnsetup.m, 557 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\DBN\dbntrain.m, 232 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\DBN\dbnunfoldtonn.m, 425 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\DBN\rbmdown.m, 90 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\DBN\rbmtrain.m, 1401 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\DBN\rbmup.m, 89 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\LICENSE, 1313 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\NN, 0 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\NN\nnapplygrads.m, 628 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\NN\nnbp.m, 1638 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\NN\nnchecknumgrad.m, 704 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\NN\nneval.m, 772 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\NN\nnff.m, 1849 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\NN\nnpredict.m, 188 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\NN\nnsetup.m, 1844 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\NN\nntest.m, 180 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\NN\nntrain.m, 2414 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\NN\nnupdatefigures.m, 1858 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\README.md, 8730 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\README_header.md, 2256 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\REFS.md, 950 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\SAE, 0 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\SAE\saesetup.m, 132 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\SAE\saetrain.m, 308 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\create_readme.sh, 744 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\data, 0 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\data\mnist_uint8.mat, 14735220 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\tests, 0 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\tests\runalltests.m, 165 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\tests\test_cnn_gradients_are_numerically_correct.m, 552 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\tests\test_example_CNN.m, 981 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\tests\test_example_DBN.m, 1031 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\tests\test_example_NN.m, 3247 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\tests\test_example_SAE.m, 934 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\tests\test_nn_gradients_are_numerically_correct.m, 749 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util, 0 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\allcomb.m, 2618 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\expand.m, 1958 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\flicker.m, 208 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\flipall.m, 80 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\fliplrf.m, 543 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\flipudf.m, 576 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\im2patches.m, 313 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\isOctave.m, 108 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\makeLMfilters.m, 1895 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\myOctaveVersion.m, 169 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\normalize.m, 97 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\patches2im.m, 242 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\randcorr.m, 283 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\randp.m, 2083 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\rnd.m, 49 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\sigm.m, 48 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\sigmrnd.m, 126 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\softmax.m, 256 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\tanh_opt.m, 54 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\visualize.m, 1072 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\whiten.m, 183 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\zscore.m, 137 , 2014-01-12

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • MSR_original
    说明:  多尺度加权的rentinex算法实现图像增强,里面用到了高斯滤波对图像进行滤波,可以去除大部分的噪声,平滑图像效果较突出,3个高斯尺度对图像做滤波后加权在一起得到多尺度信息的图像。(Multiscale weighted rentinex algorithm is used to enhance the image. Gauss filter is used to filter the image, which can remove most of the noise. The smoothing effect of the image is prominent. Three Gaussian scales are filtered and weighted together to get the multi-scale information of the image.)
    2020-07-03 06:40:02下载
    积分:1
  • ENVIMNFTrans
    高光谱图像进行MNF变换,采用MAF评价图像的噪声;处理过程与ENVI软件中的完全一样。(MNF transformation of hyperspectral images, using noise MAF to evaluate the image.the process is exactly the same with ENVI software .)
    2014-07-21 10:29:49下载
    积分:1
  • pcalda
    说明:  包括pca和lda两个文件,先用pca降维后进行lda进行分类,用于人脸识别,实验结果很好。(It includes 2 files pca and lda. After the dimensionality reduction of pca, use lda for classification in face recognition. It has a very good experimental results.)
    2009-08-22 19:43:06下载
    积分:1
  • SIFT
    用SIFT算法实现了刚性和非刚性图像的配准 并且效果非常理想 SIFT的特征点的提取 描述 和匹配的算法有注释(Nonrigid Registration Using Free-Form Deformation. )
    2013-10-08 13:26:25下载
    积分:1
  • handwrittensegment
    实现对一幅图像的汉字分割,利用图像点扫描(To achieve an image of the Chinese character segmentation, the use of the image spot scanning)
    2010-11-24 17:45:45下载
    积分:1
  • CurveLab-2.1.2.tar
    说明:  Matlab曲波变换工具箱,安装在matlab上,可以应用曲波变换(Matlab curvelet transformation toolbox)
    2020-04-13 22:26:18下载
    积分:1
  • fuzzy_thresh
    一个基于模糊阈值的图象分割,是基于MATLAB编程的,希望对大家有所帮助!(a threshold based on the fuzzy image segmentation is based on MATLAB programming, we want to help!)
    2007-06-21 15:26:32下载
    积分:1
  • steel jishu -code
    说明:  基于matlab的钢筋计数方法,有ui界面(MATLAB-based steel bar counting method with UI interface)
    2020-12-23 20:39:07下载
    积分:1
  • Log convert
    用C++实现的对数变换达到图像增强效果,代码亲测可用(Logarithmic transformation realized by C++ achieves image enhancement effect, and code pro-test is available.)
    2019-05-12 09:42:49下载
    积分:1
  • aaa111
    关于Bayes分类器的 实验数据都有 大家相互共享 很好用的软件(Bayesian classifier on the experimental data we have very good mutual sharing of software)
    2006-09-20 09:54:24下载
    积分:1
  • 696518资源总数
  • 105678会员总数
  • 22今日下载