登录
首页 » matlab » GNN_1_1b

GNN_1_1b

于 2020-07-03 发布 文件大小:473KB
0 197
下载积分: 1 下载次数: 18

代码说明:

  基于GNN神经网络的系统仿真,具有较好的仿真效果。(Based on GNN neural network system simulation, has a good simulation results.)

文件列表:

GNN_1_1b
........\GNN 1.1b
........\........\comparisonNet
........\........\.............\initializeComparisonNet.m,1962,2007-12-15
........\........\.............\learnComparisonNet.m,5195,2007-12-15
........\........\.............\plotComparisonNetTrainingResults.m,613,2007-12-15
........\........\.............\testComparisonNet.m,7469,2007-12-15
........\........\Configure.m,39956,2011-03-01
........\........\datasets
........\........\........\CliqueDataset.config,1039,2007-12-15
........\........\........\HalfHotDataset.config,892,2007-12-15
........\........\........\makeCliqueDataset.m,9487,2007-12-15
........\........\........\makeCliqueDataset_fix_rand.m,9786,2007-12-15
........\........\........\makeGeneralDataset.m,8650,2007-12-15
........\........\........\makeHalfHotDataset.m,11774,2007-12-15
........\........\........\makeMutagenicDataset.m,13115,2013-02-11
........\........\........\makeNeighborsDataset.m,9303,2007-12-15
........\........\........\makeOddEvenDataset.m,7952,2007-12-15
........\........\........\makeParityDataset.m,7941,2007-12-15
........\........\........\makeSecondOrderNeighborsDataset.m,9856,2007-12-15
........\........\........\makeSubGraphDataset.m,11308,2007-12-15
........\........\........\makeTmpDataset.m,1891,2007-12-15
........\........\........\makeTreeDepthDataset.m,9592,2007-12-15
........\........\........\makeWebPagesScoringDataset.m,10743,2007-12-15
........\........\........\muta-f.pl,390315,2007-12-15
........\........\........\muta-u.pl,77086,2007-12-15
........\........\........\muta.pl,467401,2007-12-15
........\........\........\muta.pl_new,357429,2007-12-15
........\........\........\NeighborsDataset.config,854,2007-12-15
........\........\........\ParityDataset.config,806,2007-12-15
........\........\........\SecondOrderNeighborsDataset.config,875,2007-12-15
........\........\........\SubGraphMatchingDataset.config,1120,2007-12-15
........\........\........\TreeDepthDataset.config,788,2007-12-15
........\........\........\TreeDepthDataset.config.backup,808,2007-12-15
........\........\........\WebPagesScoringDataset.config,868,2007-12-15
........\........\experiments
........\........\...........\init_class.m,432,2007-12-15
........\........\...........\save_learning.m,1046,2007-12-15
........\........\...........\start_learning.m,161,2007-12-15
........\........\...........\test_learning.m,1600,2007-12-15
........\........\GNN.config,2857,2011-03-01
........\........\GNN_DOC.pdf,190123,2011-07-21
........\........\initialization
........\........\..............\initializeNet.m,1547,2007-12-15
........\........\isomorphism
........\........\...........\areIsomorph.m,1664,2007-12-15
........\........\...........\isomorphism.mat,4295,2007-12-15
........\........\...........\mygetPR.m,282,2007-12-15
........\........\...........\mytest.m,287,2007-12-15
........\........\learn.m,552,2007-12-15
........\........\MLP
........\........\...\initializeMLP.m,1653,2007-12-15
........\........\...\testMLP.m,2656,2007-12-15
........\........\...\trainMLP.m,4954,2007-12-15
........\........\neuralNetworks
........\........\..............\backwardOneLayerLinearOutNet.m,431,2007-12-15
........\........\..............\backwardOneLayerNet.m,826,2007-12-15
........\........\..............\backwardTwoLayerLinearOutNet.m,725,2007-12-15
........\........\..............\backwardTwoLayerNet.m,982,2007-12-15
........\........\..............\forwardJacobianOneLayerLinearOutNet.m,166,2007-12-15
........\........\..............\forwardJacobianOneLayerNet.m,239,2007-12-15
........\........\..............\forwardOneLayerLinearOutNet.m,698,2007-12-15
........\........\..............\forwardOneLayerNet.m,340,2007-12-15
........\........\..............\forwardTwoLayerLinearOutNet.m,1207,2007-12-15
........\........\..............\forwardTwoLayerNet.m,1216,2007-12-15
........\........\..............\getDeltaJacobianOneLayerLinearOutNet.m,368,2007-12-15
........\........\..............\getDeltaJacobianOneLayerNet.m,521,2007-12-15
........\........\..............\getDeltaJacobianTwoLayerLinearOutNet.m,831,2007-12-15
........\........\..............\getDeltaJacobianTwoLayerNet.m,929,2007-12-15
........\........\..............\getJacobianOneLayerLinearOutNet.m,781,2007-12-15
........\........\..............\getJacobianTwoLayerLinearOutNet.m,780,2007-12-15
........\........\private
........\........\.......\displayTestRes.m,2271,2007-12-15
........\........\.......\evaluateAccuracyOnGraphs.m,652,2007-12-15
........\........\.......\learn_.m,20232,2007-12-15
........\........\.......\test4autoassociator.m,14720,2007-12-15
........\........\.......\test4autoassociator_old.m,17292,2007-12-15
........\........\.......\test4autoassociator_veryold.m,11827,2007-12-15
........\........\.......\test4classification.m,12806,2011-03-11
........\........\.......\test4regression.m,9993,2011-03-11
........\........\.......\test4uniform.m,5827,2007-12-15
........\........\save_experiment.m,376,2007-12-15
........\........\startSession.m,72,2011-03-01
........\........\systemModels
........\........\............\autoassociatorComputeDeltaError.m,637,2007-12-15
........\........\............\autoassociatorComputeError.m,1456,2007-12-15
........\........\............\linearModelInitialize.m,1128,2007-12-15
........\........\............\linearModelRunBackward.m,3807,2007-12-15
........\........\............\linearModelRunForward.m,2208,2007-12-15
........\........\............\mseComputeDeltaError.m,654,2007-12-15
........\........\............\mseComputeError.m,1344,2007-12-15
........\........\............\neuralModelAutomorphComputeError.m,1651,2007-12-15
........\........\............\neuralModelGetDeltaJacobian.m,1265,2007-12-15
........\........\............\neuralModelGetJacobian.m,1837,2007-12-15
........\........\............\neuralModelInitialize.m,6488,2007-12-15
........\........\............\neuralModelQuadraticComputeDeltaError.m,587,2007-12-15
........\........\............\neuralModelQuadraticComputeError.m,1063,2007-12-15
........\........\............\neuralModelRunBackward.m,1285,2007-12-15
........\........\............\neuralModelRunForward.m,1555,2007-12-15
........\........\............\neuralModelWithProductComputeDeltaError.m,1308,2007-12-15

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 电能质量 暂时过电压和瞬态过电压
    电能质量 暂时过电压和瞬态过电压 电能质量 暂时过电压和瞬态过电压(Power Quality Transient Overvoltage and Transient Overvoltage)
    2018-12-03 16:09:51下载
    积分:1
  • 无刷电机资料,经典的电机的速度PID控制程序,极好,找了好久找到的。...
    无刷电机资料,经典的电机的速度PID控制程序,极其好,找了好久找到的。-Brushless motor information, the classic PID motor speed control procedures, is extremely good, looking for a long time to find.
    2022-01-26 04:03:15下载
    积分:1
  • 编程 有关键盘的使用问题 可供初学者参考使用
    编程 有关键盘的使用问题 可供初学者参考使用-keyboard programming on the use of reference for beginners
    2022-02-02 21:14:59下载
    积分:1
  • this a sample C++ codes for beginners.It helps to draw a graph using some inbuil...
    this a sample C++ codes for beginners.It helps to draw a graph using some inbuilt functions.-this is a sample C++ codes for beginners.It helps to draw a graph using some inbuilt functions.
    2022-01-25 23:36:33下载
    积分:1
  • threemethods
    三种DOA方法:经典的MUSIC,前后向空间平滑和改进的空间平滑算法(DOA three methods: the classic MUSIC, before and after spatial smoothing and improved spatial smoothing algorithm)
    2009-05-26 14:42:01下载
    积分:1
  • 网页URL地址的js插件
    说明:  一款可以非常实用方便的操纵网页URL地址的js插件(A very practical and convenient JS plug-in for manipulating web page URL address)
    2019-01-02 10:26:58下载
    积分:1
  • 研究柯西变异
    主要是研究人工免疫网络算法的,其中改变了变异算子,改变后的变异算子为柯西变异,仅供大家参考(This paper mainly studies the artificial immune network algorithm, which changes the mutation operator, and the mutation operator is Cauchy mutation, for your reference only)
    2021-03-29 09:29:11下载
    积分:1
  • Secondary development of one module, the bulk barcode generation, styles: from i...
    二次开发模块 一、条形码的批量生成, 款式:由存货(7)+颜色(2)+尺码(2)+供应码(2)+年份(4)+月份(2)+流水号(6)自由组合生成 面料:由存货(7)+颜色(2)+供应码(2)自由组合生成 (1)由于每件款式的条码是唯一的,其数据量相当大,在数据库存储方面若按以往的方式处理,估计数据库是无法承受。故需采用新的存储方式,在这存储方面就需花较多的时间方可解决。 (2)条码生成后需同时往用友数据库(表:InventoryBarCodeSet)插入数据,以供用友制单时提供对应关系。 -Secondary development of one module, the bulk barcode generation, styles: from inventory (7)+ Color (2)+ Size (2)+ Supply code (2)+ Year (4)+ Month (2) 2B ! serial number (6) to generate ensembles of fabrics: from inventory (7)+ color (2)+ supply code (2) free combination to generate (1) as a result of each style of bar code is the only, the amount of data quite large, if the database storage means in accordance with the previous treatment, it is estimated that the database is not unbearable. Therefore need to adopt a new way of storage in this storage area on the need to spend more time in order to resolve. (2) bar code generated at the same time after UFIDA to database (table: InventoryBarCodeSet) Insert the data for single-UF s
    2022-05-29 12:52:49下载
    积分:1
  • This is when the kids played a comparison of the classic game mine for c++ begin...
    这是小时候的小孩玩过的比较经典的一款小游戏扫雷,适合c++初学者借鉴-This is when the kids played a comparison of the classic game mine for c++ beginners learn
    2022-08-10 11:26:08下载
    积分:1
  • Desktop
    说明:  蒙特卡洛模拟风电场随机出力,产生多种场景(Monte Carlo simulation)
    2021-04-18 20:48:57下载
    积分:1
  • 696518资源总数
  • 105885会员总数
  • 31今日下载