登录
首页 » WINDOWS » SparkMLlibDeepLearn-master

SparkMLlibDeepLearn-master

于 2020-11-26 发布 文件大小:293KB
0 150
下载积分: 1 下载次数: 2

代码说明:

  深度信念网络,非常好的代码,有具体的事例(Deep belief network, very good code, there are specific examples)

文件列表:

SparkMLlibDeepLearn-master
SparkMLlibDeepLearn-master\.cache
SparkMLlibDeepLearn-master\.classpath
SparkMLlibDeepLearn-master\.project
SparkMLlibDeepLearn-master\.settings
SparkMLlibDeepLearn-master\.settings\org.eclipse.jdt.core.prefs
SparkMLlibDeepLearn-master\LICENSE
SparkMLlibDeepLearn-master\README.md
SparkMLlibDeepLearn-master\bin
SparkMLlibDeepLearn-master\bin\CAE
SparkMLlibDeepLearn-master\bin\CAE\CAE$.class
SparkMLlibDeepLearn-master\bin\CAE\CAE.class
SparkMLlibDeepLearn-master\bin\CNN
SparkMLlibDeepLearn-master\bin\CNN\CNN$.class
SparkMLlibDeepLearn-master\bin\CNN\CNN.class
SparkMLlibDeepLearn-master\bin\DBN
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$16.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$DBNtrain$1$$anonfun$apply$mcVI$sp$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$DBNtrain$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$DBNtrain$2$$anonfun$2.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$DBNtrain$2$$anonfun$apply$mcVI$sp$2$$anonfun$apply$mcVI$sp$3.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$DBNtrain$2$$anonfun$apply$mcVI$sp$2.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$DBNtrain$2.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$InitialW$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$Initialb$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$Initialc$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$InitialvW$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$Initialvb$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$Initialvc$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$10.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$11.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$12.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$13.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$14.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$15.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$3.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$4.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$5.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$6.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$7.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$8.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$9.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$.class
SparkMLlibDeepLearn-master\bin\DBN\DBN.class
SparkMLlibDeepLearn-master\bin\DBN\DBNConfig$.class
SparkMLlibDeepLearn-master\bin\DBN\DBNConfig.class
SparkMLlibDeepLearn-master\bin\DBN\DBNModel$$anonfun$dbnunfoldtonn$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBNModel.class
SparkMLlibDeepLearn-master\bin\DBN\DBNweight$.class
SparkMLlibDeepLearn-master\bin\DBN\DBNweight.class
SparkMLlibDeepLearn-master\bin\NN
SparkMLlibDeepLearn-master\bin\NN\NNConfig$.class
SparkMLlibDeepLearn-master\bin\NN\NNConfig.class
SparkMLlibDeepLearn-master\bin\NN\NNLabel$.class
SparkMLlibDeepLearn-master\bin\NN\NNLabel.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$1.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$11$$anonfun$12.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$11.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$13.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$14$$anonfun$5.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$14.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$15$$anonfun$apply$1.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$15.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$16.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$17.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$2.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$21.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$22$$anonfun$apply$2$$anonfun$6.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$22$$anonfun$apply$2$$anonfun$7.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$22$$anonfun$apply$2.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$22$$anonfun$apply$3.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$22.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$23.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$24$$anonfun$apply$4.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$24.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$25$$anonfun$apply$5.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$25.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$26.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$27.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$28.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$3.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$ActiveP$1$$anonfun$18.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$ActiveP$1$$anonfun$19.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$ActiveP$1$$anonfun$20.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$ActiveP$1.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$InitialActiveP$1.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$InitialWeight$1.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$InitialWeightV$1.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$NNapplygrads$1.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$NNbp$1.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$NNbp$2.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$NNtrain$1$$anonfun$4.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$NNtrain$1$$anonfun$apply$mcVI$sp$1$$anonfun$10.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$NNtrain$1$$anonfun$apply$mcVI$sp$1$$anonfun$6$$anonfun$apply$2$$anonfun$2.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$NNtrain$1$$anonfun$apply$mcVI$sp$1$$anonfun$6$$anonfun$apply$2.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$NNtrain$1$$anonfun$apply$mcVI$sp$1$$anonfun$7.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$NNtrain$1$$anonfun$apply$mcVI$sp$1$$anonfun$8.class

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • led
    led入射fbg的反射谱和透射谱。功能齐全,三维图形(led the reflection spectrum and the incident fbg transmission spectrum. Fully functional, three-dimensional graphics)
    2011-10-18 02:39:20下载
    积分:1
  • nbook
    multiobjective optimization
    2012-10-02 21:03:21下载
    积分:1
  • work12345
    16QAM调制解调的源码,非常有用,即下即用。(failed to translate)
    2013-05-06 22:55:27下载
    积分:1
  • xindaomoni
    利用matlab程序对正交频分复用中的信道进行了模拟(Matlab program to use orthogonal frequency division multiplexing in the channel to simulate)
    2008-04-18 22:35:47下载
    积分:1
  • matlab
    基于matlab 的 dft 的 fft 的 是吸纳(the same as before fft dft )
    2009-05-09 00:02:01下载
    积分:1
  • matlab
    中文名称:主成分分析 英文名称:principal component analysis 定义:一种统计方法,它对多变量表示数据点集合寻找尽可能少的正交矢量表征数据信息特征。 (Chinese name: Principal component analysis of the English name: principal component analysis defined: a statistical approach, where the variable represents the collection of data points to find the lowest possible number of orthogonal vector characterization data characteristics.)
    2012-05-03 16:07:38下载
    积分:1
  • MATLAB_rmjc
    本资料详实的讲解了matlab的基础知识及编程方法,是初学者学习的好资料(this informative presentation of the basic knowledge of Matlab programming method and is a good beginners learning information)
    2007-01-12 21:55:22下载
    积分:1
  • GP
    说明:  matlab用GP算法求解关联维数的值。。。。。(Solving matlab correlation dimension)
    2015-12-15 11:24:18下载
    积分:1
  • matlab8910
    这是我们上课用的Matlab课件,非常有用,希望对大家有用。。。(This is our school with the Matlab software, very useful, useful for all of us hope. . .)
    2009-07-21 09:53:34下载
    积分:1
  • 2
    Another matlab file for transporter seller progrramming, as before
    2013-07-29 21:33:30下载
    积分:1
  • 696518资源总数
  • 106148会员总数
  • 10今日下载