登录
首页 » WINDOWS » SparkMLlibDeepLearn-master

SparkMLlibDeepLearn-master

于 2020-11-26 发布 文件大小:293KB
0 151
下载积分: 1 下载次数: 2

代码说明:

  深度信念网络,非常好的代码,有具体的事例(Deep belief network, very good code, there are specific examples)

文件列表:

SparkMLlibDeepLearn-master
SparkMLlibDeepLearn-master\.cache
SparkMLlibDeepLearn-master\.classpath
SparkMLlibDeepLearn-master\.project
SparkMLlibDeepLearn-master\.settings
SparkMLlibDeepLearn-master\.settings\org.eclipse.jdt.core.prefs
SparkMLlibDeepLearn-master\LICENSE
SparkMLlibDeepLearn-master\README.md
SparkMLlibDeepLearn-master\bin
SparkMLlibDeepLearn-master\bin\CAE
SparkMLlibDeepLearn-master\bin\CAE\CAE$.class
SparkMLlibDeepLearn-master\bin\CAE\CAE.class
SparkMLlibDeepLearn-master\bin\CNN
SparkMLlibDeepLearn-master\bin\CNN\CNN$.class
SparkMLlibDeepLearn-master\bin\CNN\CNN.class
SparkMLlibDeepLearn-master\bin\DBN
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$16.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$DBNtrain$1$$anonfun$apply$mcVI$sp$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$DBNtrain$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$DBNtrain$2$$anonfun$2.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$DBNtrain$2$$anonfun$apply$mcVI$sp$2$$anonfun$apply$mcVI$sp$3.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$DBNtrain$2$$anonfun$apply$mcVI$sp$2.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$DBNtrain$2.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$InitialW$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$Initialb$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$Initialc$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$InitialvW$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$Initialvb$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$Initialvc$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$10.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$11.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$12.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$13.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$14.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$15.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$3.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$4.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$5.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$6.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$7.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$8.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$9.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$.class
SparkMLlibDeepLearn-master\bin\DBN\DBN.class
SparkMLlibDeepLearn-master\bin\DBN\DBNConfig$.class
SparkMLlibDeepLearn-master\bin\DBN\DBNConfig.class
SparkMLlibDeepLearn-master\bin\DBN\DBNModel$$anonfun$dbnunfoldtonn$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBNModel.class
SparkMLlibDeepLearn-master\bin\DBN\DBNweight$.class
SparkMLlibDeepLearn-master\bin\DBN\DBNweight.class
SparkMLlibDeepLearn-master\bin\NN
SparkMLlibDeepLearn-master\bin\NN\NNConfig$.class
SparkMLlibDeepLearn-master\bin\NN\NNConfig.class
SparkMLlibDeepLearn-master\bin\NN\NNLabel$.class
SparkMLlibDeepLearn-master\bin\NN\NNLabel.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$1.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$11$$anonfun$12.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$11.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$13.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$14$$anonfun$5.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$14.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$15$$anonfun$apply$1.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$15.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$16.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$17.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$2.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$21.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$22$$anonfun$apply$2$$anonfun$6.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$22$$anonfun$apply$2$$anonfun$7.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$22$$anonfun$apply$2.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$22$$anonfun$apply$3.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$22.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$23.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$24$$anonfun$apply$4.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$24.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$25$$anonfun$apply$5.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$25.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$26.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$27.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$28.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$3.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$ActiveP$1$$anonfun$18.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$ActiveP$1$$anonfun$19.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$ActiveP$1$$anonfun$20.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$ActiveP$1.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$InitialActiveP$1.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$InitialWeight$1.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$InitialWeightV$1.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$NNapplygrads$1.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$NNbp$1.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$NNbp$2.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$NNtrain$1$$anonfun$4.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$NNtrain$1$$anonfun$apply$mcVI$sp$1$$anonfun$10.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$NNtrain$1$$anonfun$apply$mcVI$sp$1$$anonfun$6$$anonfun$apply$2$$anonfun$2.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$NNtrain$1$$anonfun$apply$mcVI$sp$1$$anonfun$6$$anonfun$apply$2.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$NNtrain$1$$anonfun$apply$mcVI$sp$1$$anonfun$7.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$NNtrain$1$$anonfun$apply$mcVI$sp$1$$anonfun$8.class

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • jiegou
    用M-B函数模拟分形表面轮廓并由结构函数法求出分形轮廓的分形维数(MB function is applied to simulate fractal surface profile and structure function method foe computing the fractal dimension of the fractal profile is proposed.)
    2021-04-22 09:38:48下载
    积分:1
  • A-Hybrid-Smart-AC--DC-Power-System(1)
    base paper is describing the file aC to DC concepts in matlab simulation concept
    2013-03-09 14:34:43下载
    积分:1
  • rls
    说明:  RLS算法的matlab实现,可用于各种自适应滤波的仿真(rls )
    2010-04-04 10:38:54下载
    积分:1
  • ofdm
    说明:  对OFDM通信系统进行仿真,使用AWGN信道,生成误码率与信噪比的仿真图形,并与理论图形进行比较(The simulation of the OFDM communication system, using the AWGN channel, BER and SNR generated graphic simulation, and compared with the theoretical graph)
    2010-04-25 15:38:14下载
    积分:1
  • radarfilter
    本程序是雷达波形匹配滤波器的gui图形界面程序。(This program is the radar waveform matched filter gui graphical interface program.)
    2011-08-22 14:42:12下载
    积分:1
  • ofdm
    说明:  这是一个测试OFDM的文本文件。你会看到,OFDM可以更好地处理多径信道。(This is a text file for testing OFDM. You will see that OFDM can handle multipath channels much better than QAM.)
    2010-04-11 21:09:44下载
    积分:1
  • ssukf
    球面ukf,ssukf卡尔曼滤波程序matlab代码(Spherical ukf, ssukf Kalman filtering program matlab code)
    2011-07-30 16:23:01下载
    积分:1
  • envireadandwrite
    matlab 与ENVI中数据格式转换,可以很好地实现两者之间的数据格式转换,包括enviwrite,enviread等(matlab with ENVI data format conversion, you can achieve a good conversion between data formats, including enviwrite, enviread etc.)
    2020-10-20 13:37:25下载
    积分:1
  • PCA_face_recognition-_Matlab
    基于Matlab的PCA人脸识别算法,代码注释清楚,实现简单。(PCA face recognition algorithm based on Matlab)
    2014-02-20 19:18:03下载
    积分:1
  • 16QAM
    16QAM数字通信信号的调制解调程序,尽可能的仿真实际的通信系统(16QAM modulation and demodulation digital communication signal process, as far as possible the actual communication system simulation)
    2010-09-25 14:39:42下载
    积分:1
  • 696518资源总数
  • 106161会员总数
  • 5今日下载