登录
首页 » WINDOWS » SparkMLlibDeepLearn-master

SparkMLlibDeepLearn-master

于 2020-11-26 发布 文件大小:293KB
0 155
下载积分: 1 下载次数: 2

代码说明:

  深度信念网络,非常好的代码,有具体的事例(Deep belief network, very good code, there are specific examples)

文件列表:

SparkMLlibDeepLearn-master
SparkMLlibDeepLearn-master\.cache
SparkMLlibDeepLearn-master\.classpath
SparkMLlibDeepLearn-master\.project
SparkMLlibDeepLearn-master\.settings
SparkMLlibDeepLearn-master\.settings\org.eclipse.jdt.core.prefs
SparkMLlibDeepLearn-master\LICENSE
SparkMLlibDeepLearn-master\README.md
SparkMLlibDeepLearn-master\bin
SparkMLlibDeepLearn-master\bin\CAE
SparkMLlibDeepLearn-master\bin\CAE\CAE$.class
SparkMLlibDeepLearn-master\bin\CAE\CAE.class
SparkMLlibDeepLearn-master\bin\CNN
SparkMLlibDeepLearn-master\bin\CNN\CNN$.class
SparkMLlibDeepLearn-master\bin\CNN\CNN.class
SparkMLlibDeepLearn-master\bin\DBN
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$16.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$DBNtrain$1$$anonfun$apply$mcVI$sp$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$DBNtrain$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$DBNtrain$2$$anonfun$2.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$DBNtrain$2$$anonfun$apply$mcVI$sp$2$$anonfun$apply$mcVI$sp$3.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$DBNtrain$2$$anonfun$apply$mcVI$sp$2.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$DBNtrain$2.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$InitialW$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$Initialb$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$Initialc$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$InitialvW$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$Initialvb$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$Initialvc$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$10.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$11.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$12.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$13.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$14.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$15.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$3.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$4.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$5.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$6.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$7.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$8.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$9.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$.class
SparkMLlibDeepLearn-master\bin\DBN\DBN.class
SparkMLlibDeepLearn-master\bin\DBN\DBNConfig$.class
SparkMLlibDeepLearn-master\bin\DBN\DBNConfig.class
SparkMLlibDeepLearn-master\bin\DBN\DBNModel$$anonfun$dbnunfoldtonn$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBNModel.class
SparkMLlibDeepLearn-master\bin\DBN\DBNweight$.class
SparkMLlibDeepLearn-master\bin\DBN\DBNweight.class
SparkMLlibDeepLearn-master\bin\NN
SparkMLlibDeepLearn-master\bin\NN\NNConfig$.class
SparkMLlibDeepLearn-master\bin\NN\NNConfig.class
SparkMLlibDeepLearn-master\bin\NN\NNLabel$.class
SparkMLlibDeepLearn-master\bin\NN\NNLabel.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$1.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$11$$anonfun$12.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$11.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$13.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$14$$anonfun$5.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$14.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$15$$anonfun$apply$1.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$15.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$16.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$17.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$2.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$21.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$22$$anonfun$apply$2$$anonfun$6.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$22$$anonfun$apply$2$$anonfun$7.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$22$$anonfun$apply$2.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$22$$anonfun$apply$3.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$22.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$23.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$24$$anonfun$apply$4.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$24.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$25$$anonfun$apply$5.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$25.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$26.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$27.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$28.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$3.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$ActiveP$1$$anonfun$18.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$ActiveP$1$$anonfun$19.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$ActiveP$1$$anonfun$20.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$ActiveP$1.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$InitialActiveP$1.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$InitialWeight$1.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$InitialWeightV$1.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$NNapplygrads$1.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$NNbp$1.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$NNbp$2.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$NNtrain$1$$anonfun$4.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$NNtrain$1$$anonfun$apply$mcVI$sp$1$$anonfun$10.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$NNtrain$1$$anonfun$apply$mcVI$sp$1$$anonfun$6$$anonfun$apply$2$$anonfun$2.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$NNtrain$1$$anonfun$apply$mcVI$sp$1$$anonfun$6$$anonfun$apply$2.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$NNtrain$1$$anonfun$apply$mcVI$sp$1$$anonfun$7.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$NNtrain$1$$anonfun$apply$mcVI$sp$1$$anonfun$8.class

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • daitonglvbo
    带通滤波,matlab调用函数,同时输出频率域与时间域响应(Bandpass filtering, matlab function is called, the output frequency domain and time domain response)
    2012-08-12 16:40:17下载
    积分:1
  • ABC
    Development ABC algorihm for energy. Solution in Matlab
    2013-09-06 13:15:13下载
    积分:1
  • matlab-program-tshinghua
    matlab语音编程必看书籍,清华出版,是matlab语音编程的指南(matlab voice must-see programming books, Tsinghua published matlab voice programming guide)
    2013-03-15 09:21:56下载
    积分:1
  • erders
    计算Motor Imagert EEG 的ERD/ERS现象(compute the ERD/ERS of the Motor Imagery data)
    2014-11-10 17:25:34下载
    积分:1
  • 8427950yuzhi
    说明:  用于数据信号去噪,非常好用,值得强烈推荐,强烈推荐(For data signal denoising, very easy to use, highly recommended, highly recommended)
    2019-03-04 20:33:43下载
    积分:1
  • DP_input_data
    matlab unit commitment
    2012-03-28 02:33:15下载
    积分:1
  • LBM-raoliu
    格子BLOTZMANN方法,二维圆柱绕流的实现(Lattice BLOTZMANN method, two-dimensional flow around a cylinder to achieve)
    2013-10-21 16:52:07下载
    积分:1
  • left
    matlab file for image processing
    2009-12-06 03:30:23下载
    积分:1
  • bartlett_with_for
    psd estimation using bartlet method
    2011-01-18 15:07:32下载
    积分:1
  • matlab_fuzzy
    说明:  不错的matlab书籍,或许能给你点帮助。(good books, perhaps you can help point.)
    2006-03-30 11:18:49下载
    积分:1
  • 696518资源总数
  • 106222会员总数
  • 14今日下载