登录
首页 » WINDOWS » SparkMLlibDeepLearn-master

SparkMLlibDeepLearn-master

于 2020-11-26 发布 文件大小:293KB
0 132
下载积分: 1 下载次数: 2

代码说明:

  深度信念网络,非常好的代码,有具体的事例(Deep belief network, very good code, there are specific examples)

文件列表:

SparkMLlibDeepLearn-master
SparkMLlibDeepLearn-master\.cache
SparkMLlibDeepLearn-master\.classpath
SparkMLlibDeepLearn-master\.project
SparkMLlibDeepLearn-master\.settings
SparkMLlibDeepLearn-master\.settings\org.eclipse.jdt.core.prefs
SparkMLlibDeepLearn-master\LICENSE
SparkMLlibDeepLearn-master\README.md
SparkMLlibDeepLearn-master\bin
SparkMLlibDeepLearn-master\bin\CAE
SparkMLlibDeepLearn-master\bin\CAE\CAE$.class
SparkMLlibDeepLearn-master\bin\CAE\CAE.class
SparkMLlibDeepLearn-master\bin\CNN
SparkMLlibDeepLearn-master\bin\CNN\CNN$.class
SparkMLlibDeepLearn-master\bin\CNN\CNN.class
SparkMLlibDeepLearn-master\bin\DBN
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$16.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$DBNtrain$1$$anonfun$apply$mcVI$sp$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$DBNtrain$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$DBNtrain$2$$anonfun$2.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$DBNtrain$2$$anonfun$apply$mcVI$sp$2$$anonfun$apply$mcVI$sp$3.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$DBNtrain$2$$anonfun$apply$mcVI$sp$2.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$DBNtrain$2.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$InitialW$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$Initialb$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$Initialc$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$InitialvW$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$Initialvb$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$Initialvc$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$10.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$11.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$12.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$13.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$14.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$15.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$3.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$4.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$5.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$6.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$7.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$8.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4$$anonfun$9.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1$$anonfun$apply$mcVI$sp$4.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$$anonfun$RBMtrain$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBN$.class
SparkMLlibDeepLearn-master\bin\DBN\DBN.class
SparkMLlibDeepLearn-master\bin\DBN\DBNConfig$.class
SparkMLlibDeepLearn-master\bin\DBN\DBNConfig.class
SparkMLlibDeepLearn-master\bin\DBN\DBNModel$$anonfun$dbnunfoldtonn$1.class
SparkMLlibDeepLearn-master\bin\DBN\DBNModel.class
SparkMLlibDeepLearn-master\bin\DBN\DBNweight$.class
SparkMLlibDeepLearn-master\bin\DBN\DBNweight.class
SparkMLlibDeepLearn-master\bin\NN
SparkMLlibDeepLearn-master\bin\NN\NNConfig$.class
SparkMLlibDeepLearn-master\bin\NN\NNConfig.class
SparkMLlibDeepLearn-master\bin\NN\NNLabel$.class
SparkMLlibDeepLearn-master\bin\NN\NNLabel.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$1.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$11$$anonfun$12.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$11.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$13.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$14$$anonfun$5.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$14.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$15$$anonfun$apply$1.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$15.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$16.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$17.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$2.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$21.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$22$$anonfun$apply$2$$anonfun$6.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$22$$anonfun$apply$2$$anonfun$7.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$22$$anonfun$apply$2.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$22$$anonfun$apply$3.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$22.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$23.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$24$$anonfun$apply$4.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$24.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$25$$anonfun$apply$5.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$25.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$26.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$27.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$28.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$3.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$ActiveP$1$$anonfun$18.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$ActiveP$1$$anonfun$19.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$ActiveP$1$$anonfun$20.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$ActiveP$1.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$InitialActiveP$1.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$InitialWeight$1.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$InitialWeightV$1.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$NNapplygrads$1.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$NNbp$1.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$NNbp$2.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$NNtrain$1$$anonfun$4.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$NNtrain$1$$anonfun$apply$mcVI$sp$1$$anonfun$10.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$NNtrain$1$$anonfun$apply$mcVI$sp$1$$anonfun$6$$anonfun$apply$2$$anonfun$2.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$NNtrain$1$$anonfun$apply$mcVI$sp$1$$anonfun$6$$anonfun$apply$2.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$NNtrain$1$$anonfun$apply$mcVI$sp$1$$anonfun$7.class
SparkMLlibDeepLearn-master\bin\NN\NeuralNet$$anonfun$NNtrain$1$$anonfun$apply$mcVI$sp$1$$anonfun$8.class

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 2改进的粒子群算法20160831
    说明:  改进的粒子群算法,适合新手学习,通俗易懂,好上手(Particle swarm optimization algorithm detailed explanation, convenient for novices to learn, easy to use)
    2020-11-13 20:19:43下载
    积分:1
  • osu_svm3.00
    matlab代码,希望学习matlab的有帮助(The source code of matlab )
    2010-09-16 09:54:46下载
    积分:1
  • Matlab
    机械工程设计分析和MATLAB应用 第2版(郭仁生) 配套程序源代码(Mechanical engineering design analysis and application of MATLAB 2 (Guo Rensheng) supporting source code)
    2011-06-01 17:38:51下载
    积分:1
  • MTJ_AWGN_vita_64
    multi jammer code for matlab
    2012-01-04 20:44:43下载
    积分:1
  • 代码
    包括simulink的粒子群算法,光伏PV,空间矢量控制SVPWM,dsp的看门狗(include PSO,SVPWM,PV,WATCHDOG and so on.)
    2018-12-25 10:47:05下载
    积分:1
  • muller
    用muller算法求解非线性方程的根 已知方程f(x)=0的三个近似根,以这3点为节点构造二次插值多项式的一个零点作为近似根; 不断迭代计算直到满足精度为止;(Solving the roots of nonlinear equations with Muller algorithm)
    2010-11-18 12:11:00下载
    积分:1
  • DEEC
    This is the code of DEEC protocol of wireless sensor network. It is a matlab code
    2013-10-08 19:48:11下载
    积分:1
  • zhejixiangguan
    两个简单序列的褶积,是地球物理信号处理的简单基本程序(convolution of two alignments)
    2011-12-09 22:29:10下载
    积分:1
  • matlabWavelab850
    利用小波变换对处理地震资料的matlab代码,可以对井资料和地震资料处理,适合勘探地震的初学者和信号分析的初学者(Seismic data processing matlab code, can be well data and seismic data processing, seismic exploration for beginners, is based on the original 2.1 adds new code)
    2015-02-17 11:28:29下载
    积分:1
  • filterbank
    subband audio coding
    2012-11-19 22:48:48下载
    积分:1
  • 696518资源总数
  • 105714会员总数
  • 27今日下载