登录
首页 » matlab » k-means+BOF

k-means+BOF

于 2020-11-28 发布 文件大小:11408KB
0 146
下载积分: 1 下载次数: 14

代码说明:

  提取sift特征,通过K均值聚类形成特征包,进行图像检索。(SIFT features are extracted and image packets are retrieved through K mean clustering.)

文件列表:

k-means%2BBOF, 0 , 2018-05-14
k-means%2BBOF\do_database.m, 30791 , 2015-09-30
k-means%2BBOF\do_demo.m, 1517 , 2018-04-19
k-means%2BBOF\do_descriptor.m, 6482 , 2015-08-27
k-means%2BBOF\do_diffofg.m, 464 , 2012-09-27
k-means%2BBOF\do_eucidean_distance.m, 304 , 2016-04-13
k-means%2BBOF\do_extrefine.m, 4368 , 2012-11-05
k-means%2BBOF\do_gaussian.m, 3029 , 2012-10-26
k-means%2BBOF\do_localmax.m, 2261 , 2012-11-13
k-means%2BBOF\do_orientation.m, 2765 , 2015-08-22
k-means%2BBOF\do_sift.m, 4493 , 2015-10-09
k-means%2BBOF\get_countVectors.m, 676 , 2016-04-13
k-means%2BBOF\get_sifts.m, 713 , 2016-04-13
k-means%2BBOF\get_singleVector.m, 460 , 2016-04-13
k-means%2BBOF\img_paths.txt, 4447 , 2018-04-19
k-means%2BBOF\K_Means.m, 839 , 2016-04-13
k-means%2BBOF\SIFT_feature, 0 , 2018-05-14
k-means%2BBOF\SIFT_feature\._.DS_Store, 4096 , 2015-10-07
k-means%2BBOF\SIFT_feature\._do_database.m, 4096 , 2015-10-07
k-means%2BBOF\SIFT_feature\._do_descriptor.m, 4096 , 2015-10-07
k-means%2BBOF\SIFT_feature\._do_sift.m, 4096 , 2015-10-07
k-means%2BBOF\SIFT_feature\.DS_Store, 6148 , 2015-09-02
k-means%2BBOF\SIFT_feature\demo-data, 0 , 2018-05-14
k-means%2BBOF\SIFT_feature\demo-data\1.jpg, 5524 , 2012-10-17
k-means%2BBOF\SIFT_feature\demo-data\2.jpg, 5571 , 2012-10-17
k-means%2BBOF\SIFT_feature\demo-data\5.jpg, 35129 , 2012-10-17
k-means%2BBOF\SIFT_feature\demo-data\6.jpg, 34931 , 2012-10-17
k-means%2BBOF\SIFT_feature\demo-data\7.jpg, 9539 , 2012-10-17
k-means%2BBOF\SIFT_feature\demo-data\beaver11.bmp, 189956 , 2012-09-27
k-means%2BBOF\SIFT_feature\demo-data\beaver13.bmp, 189956 , 2012-09-27
k-means%2BBOF\SIFT_feature\demo-data\einstein.pgm, 65596 , 2012-08-15
k-means%2BBOF\SIFT_feature\demo-data\GML_RANSAC_Matlab_Toolbox_0[1].2.rar, 19215 , 2015-08-19
k-means%2BBOF\SIFT_feature\demo-data\harrisandransac.rar, 446099 , 2015-08-19
k-means%2BBOF\SIFT_feature\demo-data\image068.JPG, 14060 , 2012-09-27
k-means%2BBOF\SIFT_feature\demo-data\image069.JPG, 13579 , 2012-09-27
k-means%2BBOF\SIFT_feature\demo-data\image1.jpg, 240943 , 2015-08-18
k-means%2BBOF\SIFT_feature\demo-data\image10.jpg, 63924 , 2015-08-21
k-means%2BBOF\SIFT_feature\demo-data\image11.jpg, 145849 , 2015-08-21
k-means%2BBOF\SIFT_feature\demo-data\image2.jpg, 393897 , 2015-08-18
k-means%2BBOF\SIFT_feature\demo-data\image3.jpg, 613687 , 2015-08-18
k-means%2BBOF\SIFT_feature\demo-data\image4.jpg, 659244 , 2015-08-18
k-means%2BBOF\SIFT_feature\demo-data\image5.jpg, 403386 , 2015-08-18
k-means%2BBOF\SIFT_feature\demo-data\image6.jpg, 36967 , 2015-08-18
k-means%2BBOF\SIFT_feature\demo-data\image7.jpg, 48612 , 2015-08-18
k-means%2BBOF\SIFT_feature\demo-data\image8.jpg, 92051 , 2015-08-18
k-means%2BBOF\SIFT_feature\demo-data\replace1.jpg, 2466289 , 2013-07-01
k-means%2BBOF\SIFT_feature\demo-data\replace2.jpg, 2812145 , 2013-07-01
k-means%2BBOF\SIFT_feature\demo-data\view01.png, 578897 , 2012-09-27
k-means%2BBOF\SIFT_feature\demo-data\view02.png, 574557 , 2012-09-27
k-means%2BBOF\SIFT_feature\do_database.m, 30791 , 2015-09-30
k-means%2BBOF\SIFT_feature\do_descriptor.m, 6482 , 2015-08-27
k-means%2BBOF\SIFT_feature\do_diffofg.m, 464 , 2012-09-27
k-means%2BBOF\SIFT_feature\do_extrefine.m, 4368 , 2012-11-05
k-means%2BBOF\SIFT_feature\do_gaussian.m, 3029 , 2012-10-26
k-means%2BBOF\SIFT_feature\do_localmax.m, 2261 , 2012-11-13
k-means%2BBOF\SIFT_feature\do_orientation.m, 2765 , 2015-08-22
k-means%2BBOF\SIFT_feature\do_sift.m, 4493 , 2015-10-09
k-means%2BBOF\SIFT_feature\smooth.m, 243 , 2012-11-13
k-means%2BBOF\SIFT_feature\util, 0 , 2018-05-14
k-means%2BBOF\SIFT_feature\util\appendimages.m, 359 , 2012-09-27
k-means%2BBOF\SIFT_feature\util\plotsiftframe.m, 1812 , 2012-09-27
k-means%2BBOF\SIFT_feature\util\plotss.m, 640 , 2015-07-31
k-means%2BBOF\SIFT_feature\util\tightsubplot.m, 1859 , 2012-09-27
k-means%2BBOF\smooth.m, 243 , 2012-11-13
k-means%2BBOF\sourcePictures, 0 , 2018-05-14
k-means%2BBOF\sourcePictures\1.jpg, 18138 , 2018-04-14
k-means%2BBOF\sourcePictures\10.jpg, 9506 , 2018-04-14
k-means%2BBOF\sourcePictures\100.jpg, 9568 , 2018-04-15
k-means%2BBOF\sourcePictures\101.jpg, 15883 , 2018-04-15
k-means%2BBOF\sourcePictures\102.jpg, 5979 , 2018-04-15
k-means%2BBOF\sourcePictures\103.jpg, 4686 , 2018-04-15
k-means%2BBOF\sourcePictures\104.jpg, 24421 , 2018-04-15
k-means%2BBOF\sourcePictures\105.jpg, 25652 , 2018-04-15
k-means%2BBOF\sourcePictures\106.jpg, 9463 , 2018-04-15
k-means%2BBOF\sourcePictures\107.jpg, 19874 , 2018-04-15
k-means%2BBOF\sourcePictures\108.jpg, 5267 , 2018-04-15
k-means%2BBOF\sourcePictures\109.jpg, 18393 , 2018-04-15
k-means%2BBOF\sourcePictures\11.jpg, 6031 , 2018-04-14
k-means%2BBOF\sourcePictures\110.jpg, 5664 , 2018-04-15
k-means%2BBOF\sourcePictures\12.jpg, 7202 , 2018-04-14
k-means%2BBOF\sourcePictures\13.jpg, 5459 , 2018-04-14
k-means%2BBOF\sourcePictures\14.jpg, 16511 , 2018-04-14
k-means%2BBOF\sourcePictures\15.jpg, 16722 , 2018-04-14
k-means%2BBOF\sourcePictures\16.jpg, 17399 , 2018-04-14
k-means%2BBOF\sourcePictures\17.jpg, 18570 , 2018-04-14
k-means%2BBOF\sourcePictures\18.jpg, 21290 , 2018-04-14
k-means%2BBOF\sourcePictures\19.jpg, 8726 , 2018-04-14
k-means%2BBOF\sourcePictures\2.jpg, 18123 , 2018-04-14
k-means%2BBOF\sourcePictures\20.jpg, 15315 , 2018-04-14
k-means%2BBOF\sourcePictures\21.jpg, 16620 , 2018-04-14
k-means%2BBOF\sourcePictures\22.jpg, 10571 , 2018-04-14
k-means%2BBOF\sourcePictures\23.jpg, 3279 , 2018-04-14
k-means%2BBOF\sourcePictures\24.jpg, 15179 , 2018-04-14
k-means%2BBOF\sourcePictures\25.jpg, 4237 , 2018-04-14
k-means%2BBOF\sourcePictures\26.jpg, 16937 , 2018-04-14
k-means%2BBOF\sourcePictures\27.jpg, 8714 , 2018-04-14
k-means%2BBOF\sourcePictures\28.jpg, 6136 , 2018-04-14
k-means%2BBOF\sourcePictures\29.jpg, 30527 , 2018-04-14
k-means%2BBOF\sourcePictures\3.jpg, 16845 , 2018-04-14
k-means%2BBOF\sourcePictures\30.jpg, 31940 , 2018-04-14

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • adaptivethreshold
    与坐标相关的阈值也叫动态阈值、局部阈值、自适应阈值,局部阈值法:自适应图像分割。(Threshold associated with coordinates, also called dynamic threshold, local threshold, adaptive threshold, local threshold method: adaptive image segmentation.)
    2013-05-27 09:49:07下载
    积分:1
  • demo_ica
    说明:  高光谱遥感图像光谱解混的独立成分分析技术(Independent component analysis technique for spectral unmixing of hyperspectral remote sensing images)
    2020-07-09 15:55:24下载
    积分:1
  • retinex_frankle_mccann
    Retinex算法对较暗区域的图像处 理有明显效果,改进的Retinex方法则是基于经典Retinex,对具有较高亮度的遥感图像通过图像变 换方法达到去除模糊的目的。 (Retinex algorithm for image processing on the dark region was effective to improve the Retinex method is based on the classic Retinex, on remote sensing images with high brightness achieved by an image transformation method aims to remove ambiguity.)
    2010-06-10 16:24:00下载
    积分:1
  • DecodeString
    根据指定字符分割字符串,VC++精选编程源码,很好的参考。(According to the specified character segmentation character string, VC++ select programming source code, a good reference.)
    2013-12-03 10:56:22下载
    积分:1
  • BEMD_code
    说明:  一个比较经典的二维经验模式分解程序代码,适用于图像的特征提取和分解(A more classic two-dimensional empirical mode decomposition procedure code, applied to image feature extraction and decomposition)
    2008-11-06 11:17:41下载
    积分:1
  • tuxiangzengqiang
    图像增强的C++源程序,效果非常好,彩图ok(Image enhancement of the C++ source code, the effect is very good, Wallpapers ok)
    2009-12-16 22:44:06下载
    积分:1
  • fenchatu
    此程序用于画混沌系统的相图及其分叉图,使用时只需要写出相应的混沌微分方程,便可画出相应的图(This procedure for drawing the phase diagram of chaotic systems and its Poincare section, when used only need to write the corresponding chaotic differential equations, will be able to draw the corresponding graph.)
    2021-04-01 10:29:07下载
    积分:1
  • text1
    对数字图像的处理、灰度化等,对数字图像进行基本的操作与处理(Basic digital image manipulation and processing of digital image processing, gray,)
    2013-03-27 10:20:40下载
    积分:1
  • matlabtuxiangchuli222
    matlab的关于图像处理的一些简单源代码,大家可以试一试,欢迎下载(Matlab on image processing some simple source code, you can try downloading welcome)
    2006-11-27 22:49:00下载
    积分:1
  • DCT
    基于DCT域的数字水印算法主要包括水印调制、水印嵌入和水印提取,首先在嵌入载体图像之前用Logistic混沌序列对水印进行调制,得到一个只有+1和-1随机序列的水印,同时将载体图像进行全局DCT变换,然后将水印图像嵌入人类视觉系统最重要的部分,即DCT最大的系数,DC(Direct Current)部分也包含在这最大的系数中,这部分的系数满足人类视觉特性,会使水印嵌入的性能更好。嵌入算法是将水印与这些系数进行相乘获得新的系数,再用新的系数来替换原来的系数,即获得嵌入水印后的离散余弦域的图像,然后对这个变换后的图像进行IDCT,就会得到需要的水印图像。(While the carrier image digital watermarking algorithm based on DCT domain include watermark modulation, watermark embedding and watermark extraction, the first of the watermark embedded in a carrier modulated image before using Logistic chaotic sequence, only+1 and-1 to get a random sequence of watermark, Global DCT transform, then the watermark image is embedded most important part of the human visual system, i.e. the largest DCT coefficients, DC (Direct Current) in this section also contains the largest coefficient, the coefficient of this part of the human visual characteristics to meet, make watermarks Embed better performance. The watermark embedding algorithm is with these coefficients are multiplied to obtain new coefficients, and then a new factor to replace the original coefficients, namely discrete cosine domain to obtain an image watermarked and then transformed the image of this conduct IDCT, on watermark image will be needed.)
    2015-03-24 17:13:25下载
    积分:1
  • 696518资源总数
  • 105547会员总数
  • 4今日下载