登录
首页 » matlab » k-means+BOF

k-means+BOF

于 2020-11-28 发布 文件大小:11408KB
0 202
下载积分: 1 下载次数: 14

代码说明:

  提取sift特征,通过K均值聚类形成特征包,进行图像检索。(SIFT features are extracted and image packets are retrieved through K mean clustering.)

文件列表:

k-means%2BBOF, 0 , 2018-05-14
k-means%2BBOF\do_database.m, 30791 , 2015-09-30
k-means%2BBOF\do_demo.m, 1517 , 2018-04-19
k-means%2BBOF\do_descriptor.m, 6482 , 2015-08-27
k-means%2BBOF\do_diffofg.m, 464 , 2012-09-27
k-means%2BBOF\do_eucidean_distance.m, 304 , 2016-04-13
k-means%2BBOF\do_extrefine.m, 4368 , 2012-11-05
k-means%2BBOF\do_gaussian.m, 3029 , 2012-10-26
k-means%2BBOF\do_localmax.m, 2261 , 2012-11-13
k-means%2BBOF\do_orientation.m, 2765 , 2015-08-22
k-means%2BBOF\do_sift.m, 4493 , 2015-10-09
k-means%2BBOF\get_countVectors.m, 676 , 2016-04-13
k-means%2BBOF\get_sifts.m, 713 , 2016-04-13
k-means%2BBOF\get_singleVector.m, 460 , 2016-04-13
k-means%2BBOF\img_paths.txt, 4447 , 2018-04-19
k-means%2BBOF\K_Means.m, 839 , 2016-04-13
k-means%2BBOF\SIFT_feature, 0 , 2018-05-14
k-means%2BBOF\SIFT_feature\._.DS_Store, 4096 , 2015-10-07
k-means%2BBOF\SIFT_feature\._do_database.m, 4096 , 2015-10-07
k-means%2BBOF\SIFT_feature\._do_descriptor.m, 4096 , 2015-10-07
k-means%2BBOF\SIFT_feature\._do_sift.m, 4096 , 2015-10-07
k-means%2BBOF\SIFT_feature\.DS_Store, 6148 , 2015-09-02
k-means%2BBOF\SIFT_feature\demo-data, 0 , 2018-05-14
k-means%2BBOF\SIFT_feature\demo-data\1.jpg, 5524 , 2012-10-17
k-means%2BBOF\SIFT_feature\demo-data\2.jpg, 5571 , 2012-10-17
k-means%2BBOF\SIFT_feature\demo-data\5.jpg, 35129 , 2012-10-17
k-means%2BBOF\SIFT_feature\demo-data\6.jpg, 34931 , 2012-10-17
k-means%2BBOF\SIFT_feature\demo-data\7.jpg, 9539 , 2012-10-17
k-means%2BBOF\SIFT_feature\demo-data\beaver11.bmp, 189956 , 2012-09-27
k-means%2BBOF\SIFT_feature\demo-data\beaver13.bmp, 189956 , 2012-09-27
k-means%2BBOF\SIFT_feature\demo-data\einstein.pgm, 65596 , 2012-08-15
k-means%2BBOF\SIFT_feature\demo-data\GML_RANSAC_Matlab_Toolbox_0[1].2.rar, 19215 , 2015-08-19
k-means%2BBOF\SIFT_feature\demo-data\harrisandransac.rar, 446099 , 2015-08-19
k-means%2BBOF\SIFT_feature\demo-data\image068.JPG, 14060 , 2012-09-27
k-means%2BBOF\SIFT_feature\demo-data\image069.JPG, 13579 , 2012-09-27
k-means%2BBOF\SIFT_feature\demo-data\image1.jpg, 240943 , 2015-08-18
k-means%2BBOF\SIFT_feature\demo-data\image10.jpg, 63924 , 2015-08-21
k-means%2BBOF\SIFT_feature\demo-data\image11.jpg, 145849 , 2015-08-21
k-means%2BBOF\SIFT_feature\demo-data\image2.jpg, 393897 , 2015-08-18
k-means%2BBOF\SIFT_feature\demo-data\image3.jpg, 613687 , 2015-08-18
k-means%2BBOF\SIFT_feature\demo-data\image4.jpg, 659244 , 2015-08-18
k-means%2BBOF\SIFT_feature\demo-data\image5.jpg, 403386 , 2015-08-18
k-means%2BBOF\SIFT_feature\demo-data\image6.jpg, 36967 , 2015-08-18
k-means%2BBOF\SIFT_feature\demo-data\image7.jpg, 48612 , 2015-08-18
k-means%2BBOF\SIFT_feature\demo-data\image8.jpg, 92051 , 2015-08-18
k-means%2BBOF\SIFT_feature\demo-data\replace1.jpg, 2466289 , 2013-07-01
k-means%2BBOF\SIFT_feature\demo-data\replace2.jpg, 2812145 , 2013-07-01
k-means%2BBOF\SIFT_feature\demo-data\view01.png, 578897 , 2012-09-27
k-means%2BBOF\SIFT_feature\demo-data\view02.png, 574557 , 2012-09-27
k-means%2BBOF\SIFT_feature\do_database.m, 30791 , 2015-09-30
k-means%2BBOF\SIFT_feature\do_descriptor.m, 6482 , 2015-08-27
k-means%2BBOF\SIFT_feature\do_diffofg.m, 464 , 2012-09-27
k-means%2BBOF\SIFT_feature\do_extrefine.m, 4368 , 2012-11-05
k-means%2BBOF\SIFT_feature\do_gaussian.m, 3029 , 2012-10-26
k-means%2BBOF\SIFT_feature\do_localmax.m, 2261 , 2012-11-13
k-means%2BBOF\SIFT_feature\do_orientation.m, 2765 , 2015-08-22
k-means%2BBOF\SIFT_feature\do_sift.m, 4493 , 2015-10-09
k-means%2BBOF\SIFT_feature\smooth.m, 243 , 2012-11-13
k-means%2BBOF\SIFT_feature\util, 0 , 2018-05-14
k-means%2BBOF\SIFT_feature\util\appendimages.m, 359 , 2012-09-27
k-means%2BBOF\SIFT_feature\util\plotsiftframe.m, 1812 , 2012-09-27
k-means%2BBOF\SIFT_feature\util\plotss.m, 640 , 2015-07-31
k-means%2BBOF\SIFT_feature\util\tightsubplot.m, 1859 , 2012-09-27
k-means%2BBOF\smooth.m, 243 , 2012-11-13
k-means%2BBOF\sourcePictures, 0 , 2018-05-14
k-means%2BBOF\sourcePictures\1.jpg, 18138 , 2018-04-14
k-means%2BBOF\sourcePictures\10.jpg, 9506 , 2018-04-14
k-means%2BBOF\sourcePictures\100.jpg, 9568 , 2018-04-15
k-means%2BBOF\sourcePictures\101.jpg, 15883 , 2018-04-15
k-means%2BBOF\sourcePictures\102.jpg, 5979 , 2018-04-15
k-means%2BBOF\sourcePictures\103.jpg, 4686 , 2018-04-15
k-means%2BBOF\sourcePictures\104.jpg, 24421 , 2018-04-15
k-means%2BBOF\sourcePictures\105.jpg, 25652 , 2018-04-15
k-means%2BBOF\sourcePictures\106.jpg, 9463 , 2018-04-15
k-means%2BBOF\sourcePictures\107.jpg, 19874 , 2018-04-15
k-means%2BBOF\sourcePictures\108.jpg, 5267 , 2018-04-15
k-means%2BBOF\sourcePictures\109.jpg, 18393 , 2018-04-15
k-means%2BBOF\sourcePictures\11.jpg, 6031 , 2018-04-14
k-means%2BBOF\sourcePictures\110.jpg, 5664 , 2018-04-15
k-means%2BBOF\sourcePictures\12.jpg, 7202 , 2018-04-14
k-means%2BBOF\sourcePictures\13.jpg, 5459 , 2018-04-14
k-means%2BBOF\sourcePictures\14.jpg, 16511 , 2018-04-14
k-means%2BBOF\sourcePictures\15.jpg, 16722 , 2018-04-14
k-means%2BBOF\sourcePictures\16.jpg, 17399 , 2018-04-14
k-means%2BBOF\sourcePictures\17.jpg, 18570 , 2018-04-14
k-means%2BBOF\sourcePictures\18.jpg, 21290 , 2018-04-14
k-means%2BBOF\sourcePictures\19.jpg, 8726 , 2018-04-14
k-means%2BBOF\sourcePictures\2.jpg, 18123 , 2018-04-14
k-means%2BBOF\sourcePictures\20.jpg, 15315 , 2018-04-14
k-means%2BBOF\sourcePictures\21.jpg, 16620 , 2018-04-14
k-means%2BBOF\sourcePictures\22.jpg, 10571 , 2018-04-14
k-means%2BBOF\sourcePictures\23.jpg, 3279 , 2018-04-14
k-means%2BBOF\sourcePictures\24.jpg, 15179 , 2018-04-14
k-means%2BBOF\sourcePictures\25.jpg, 4237 , 2018-04-14
k-means%2BBOF\sourcePictures\26.jpg, 16937 , 2018-04-14
k-means%2BBOF\sourcePictures\27.jpg, 8714 , 2018-04-14
k-means%2BBOF\sourcePictures\28.jpg, 6136 , 2018-04-14
k-means%2BBOF\sourcePictures\29.jpg, 30527 , 2018-04-14
k-means%2BBOF\sourcePictures\3.jpg, 16845 , 2018-04-14
k-means%2BBOF\sourcePictures\30.jpg, 31940 , 2018-04-14

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • A-Watermarking-Algorithm(MATLAB)--
    盲水印提取时不需要参考原始载体图像,在信息隐藏、版权保护等方面具有更广泛的应用前景。提出的盲水印算法在分块离散余弦变换(DCT)和离散小波变换(DWT)的基础上,利用关系双方DCT系数和DWT系数在受到攻击时具有相同变化趋势的特点,采用关系嵌入和量化嵌入的自适应选择嵌入策略,较大幅度地提高了盲水印提取的鲁棒性。同时在量化嵌入中采用抖动调制,实现了水印透明性和鲁棒性调节的便捷性。大量仿真实验结果表明该算法对噪声干扰、低通滤波、JPEG压缩、对比度增强等攻击有很好的鲁棒性和透明性。关键词 数字水印盲水印关系嵌入量化嵌入离散余弦变换离散小波变换 按这篇文章的算法,自己编的matlab,没有攻击时水印提取率为1,加水印后图像PSNR有45+,。有攻击后提取率也有0.9+。(Blind watermark extraction can be fulfilled without referring to the original host image. Therefore it hasmuch prospective applications in the fields of information hiding and copyright protection. Based on blocking Discrete Cosine Transform (DCT) and blocking DiscreteWaveletTransform (DWT), the proposed blind watermarking algorithm uses an embedding strategy of adaptively selecting either relationship embedding or quantization embedding. The relationship em- bedding comes from the observation thatboth themagnitudes of coefficients concerned in the relationship usually have thesame change trend when the image is attacked. This strategy remarkably improves the robustness ofwatermark extraction.In addition, dithermodulation is used in quantization embedding, bywhich the tradeoff between transparency and robus-tness ofwatermarking can be easily adjusted. Simulation results show that the algorithm is fairly robust against the attacks such as noise, filtering, compression, and contrast )
    2013-04-14 16:15:47下载
    积分:1
  • rgb
    说明:  利用matlab提取图片像素点的RGB值(Using MATLAB to extract RGB value of image pixels)
    2021-04-13 10:28:56下载
    积分:1
  • motionComp
    基于三维递归搜索的运动估计得到运动矢量后进行运动补偿帧插算法,最后得到视频帧速率上转换序列(frame rate up conversion based on motion estimation)
    2020-08-18 15:48:21下载
    积分:1
  • GuaussCoordinate
    说明:  高斯投影正反算,将大地坐标转换为平面直角坐标系的坐标。(Positive and negative Gauss projection operator, the geodetic coordinates into Cartesian coordinates the coordinates.)
    2020-12-01 21:59:28下载
    积分:1
  • chage
    把图像处理的MATALAB程序转化为C++程序(put image processing procedures into MATLAB C Program)
    2007-07-10 17:26:51下载
    积分:1
  • FRJDL-Shan-ICASSP02
    有关pca算法方面的学习,有利于pca算法原理的实现(something related to the study of pca)
    2011-12-12 17:03:55下载
    积分:1
  • fmask
    调用 envi5.3自带的FMask云检测功能,并输出掩膜文件(Call the FMash cloud detection function of envi5.3 and output the mask file)
    2020-09-21 16:07:50下载
    积分:1
  • FusinMultipleCues
    使用多信息融合,检测驾驶员是否是疲劳状态,(Using the multi-information fusion to detect whether the driver is fatigue,)
    2011-07-31 15:47:15下载
    积分:1
  • CDib
    dib图像的读取,显示以及存储,能够运行(dib image read, display, and storage, and be able to run)
    2012-08-26 21:10:04下载
    积分:1
  • Iterative-Algorithms--
    本论文从CT图像重建原理入手, 根据迭代重建的物理意义, 从投影模型出发, 得到投影数据, 然后利用迭代算法MART 及SIRT 重建出断层图像, 再与模型相比较, 从而确定各算法的优劣, 总结出如何选择合适的图像重建算法。(Iterative Algorithms in Computed Tomographic Reconstruction)
    2015-12-02 16:48:58下载
    积分:1
  • 696518资源总数
  • 106222会员总数
  • 14今日下载