登录
首页 » matlab » k-means+BOF

k-means+BOF

于 2020-11-28 发布 文件大小:11408KB
0 198
下载积分: 1 下载次数: 14

代码说明:

  提取sift特征,通过K均值聚类形成特征包,进行图像检索。(SIFT features are extracted and image packets are retrieved through K mean clustering.)

文件列表:

k-means%2BBOF, 0 , 2018-05-14
k-means%2BBOF\do_database.m, 30791 , 2015-09-30
k-means%2BBOF\do_demo.m, 1517 , 2018-04-19
k-means%2BBOF\do_descriptor.m, 6482 , 2015-08-27
k-means%2BBOF\do_diffofg.m, 464 , 2012-09-27
k-means%2BBOF\do_eucidean_distance.m, 304 , 2016-04-13
k-means%2BBOF\do_extrefine.m, 4368 , 2012-11-05
k-means%2BBOF\do_gaussian.m, 3029 , 2012-10-26
k-means%2BBOF\do_localmax.m, 2261 , 2012-11-13
k-means%2BBOF\do_orientation.m, 2765 , 2015-08-22
k-means%2BBOF\do_sift.m, 4493 , 2015-10-09
k-means%2BBOF\get_countVectors.m, 676 , 2016-04-13
k-means%2BBOF\get_sifts.m, 713 , 2016-04-13
k-means%2BBOF\get_singleVector.m, 460 , 2016-04-13
k-means%2BBOF\img_paths.txt, 4447 , 2018-04-19
k-means%2BBOF\K_Means.m, 839 , 2016-04-13
k-means%2BBOF\SIFT_feature, 0 , 2018-05-14
k-means%2BBOF\SIFT_feature\._.DS_Store, 4096 , 2015-10-07
k-means%2BBOF\SIFT_feature\._do_database.m, 4096 , 2015-10-07
k-means%2BBOF\SIFT_feature\._do_descriptor.m, 4096 , 2015-10-07
k-means%2BBOF\SIFT_feature\._do_sift.m, 4096 , 2015-10-07
k-means%2BBOF\SIFT_feature\.DS_Store, 6148 , 2015-09-02
k-means%2BBOF\SIFT_feature\demo-data, 0 , 2018-05-14
k-means%2BBOF\SIFT_feature\demo-data\1.jpg, 5524 , 2012-10-17
k-means%2BBOF\SIFT_feature\demo-data\2.jpg, 5571 , 2012-10-17
k-means%2BBOF\SIFT_feature\demo-data\5.jpg, 35129 , 2012-10-17
k-means%2BBOF\SIFT_feature\demo-data\6.jpg, 34931 , 2012-10-17
k-means%2BBOF\SIFT_feature\demo-data\7.jpg, 9539 , 2012-10-17
k-means%2BBOF\SIFT_feature\demo-data\beaver11.bmp, 189956 , 2012-09-27
k-means%2BBOF\SIFT_feature\demo-data\beaver13.bmp, 189956 , 2012-09-27
k-means%2BBOF\SIFT_feature\demo-data\einstein.pgm, 65596 , 2012-08-15
k-means%2BBOF\SIFT_feature\demo-data\GML_RANSAC_Matlab_Toolbox_0[1].2.rar, 19215 , 2015-08-19
k-means%2BBOF\SIFT_feature\demo-data\harrisandransac.rar, 446099 , 2015-08-19
k-means%2BBOF\SIFT_feature\demo-data\image068.JPG, 14060 , 2012-09-27
k-means%2BBOF\SIFT_feature\demo-data\image069.JPG, 13579 , 2012-09-27
k-means%2BBOF\SIFT_feature\demo-data\image1.jpg, 240943 , 2015-08-18
k-means%2BBOF\SIFT_feature\demo-data\image10.jpg, 63924 , 2015-08-21
k-means%2BBOF\SIFT_feature\demo-data\image11.jpg, 145849 , 2015-08-21
k-means%2BBOF\SIFT_feature\demo-data\image2.jpg, 393897 , 2015-08-18
k-means%2BBOF\SIFT_feature\demo-data\image3.jpg, 613687 , 2015-08-18
k-means%2BBOF\SIFT_feature\demo-data\image4.jpg, 659244 , 2015-08-18
k-means%2BBOF\SIFT_feature\demo-data\image5.jpg, 403386 , 2015-08-18
k-means%2BBOF\SIFT_feature\demo-data\image6.jpg, 36967 , 2015-08-18
k-means%2BBOF\SIFT_feature\demo-data\image7.jpg, 48612 , 2015-08-18
k-means%2BBOF\SIFT_feature\demo-data\image8.jpg, 92051 , 2015-08-18
k-means%2BBOF\SIFT_feature\demo-data\replace1.jpg, 2466289 , 2013-07-01
k-means%2BBOF\SIFT_feature\demo-data\replace2.jpg, 2812145 , 2013-07-01
k-means%2BBOF\SIFT_feature\demo-data\view01.png, 578897 , 2012-09-27
k-means%2BBOF\SIFT_feature\demo-data\view02.png, 574557 , 2012-09-27
k-means%2BBOF\SIFT_feature\do_database.m, 30791 , 2015-09-30
k-means%2BBOF\SIFT_feature\do_descriptor.m, 6482 , 2015-08-27
k-means%2BBOF\SIFT_feature\do_diffofg.m, 464 , 2012-09-27
k-means%2BBOF\SIFT_feature\do_extrefine.m, 4368 , 2012-11-05
k-means%2BBOF\SIFT_feature\do_gaussian.m, 3029 , 2012-10-26
k-means%2BBOF\SIFT_feature\do_localmax.m, 2261 , 2012-11-13
k-means%2BBOF\SIFT_feature\do_orientation.m, 2765 , 2015-08-22
k-means%2BBOF\SIFT_feature\do_sift.m, 4493 , 2015-10-09
k-means%2BBOF\SIFT_feature\smooth.m, 243 , 2012-11-13
k-means%2BBOF\SIFT_feature\util, 0 , 2018-05-14
k-means%2BBOF\SIFT_feature\util\appendimages.m, 359 , 2012-09-27
k-means%2BBOF\SIFT_feature\util\plotsiftframe.m, 1812 , 2012-09-27
k-means%2BBOF\SIFT_feature\util\plotss.m, 640 , 2015-07-31
k-means%2BBOF\SIFT_feature\util\tightsubplot.m, 1859 , 2012-09-27
k-means%2BBOF\smooth.m, 243 , 2012-11-13
k-means%2BBOF\sourcePictures, 0 , 2018-05-14
k-means%2BBOF\sourcePictures\1.jpg, 18138 , 2018-04-14
k-means%2BBOF\sourcePictures\10.jpg, 9506 , 2018-04-14
k-means%2BBOF\sourcePictures\100.jpg, 9568 , 2018-04-15
k-means%2BBOF\sourcePictures\101.jpg, 15883 , 2018-04-15
k-means%2BBOF\sourcePictures\102.jpg, 5979 , 2018-04-15
k-means%2BBOF\sourcePictures\103.jpg, 4686 , 2018-04-15
k-means%2BBOF\sourcePictures\104.jpg, 24421 , 2018-04-15
k-means%2BBOF\sourcePictures\105.jpg, 25652 , 2018-04-15
k-means%2BBOF\sourcePictures\106.jpg, 9463 , 2018-04-15
k-means%2BBOF\sourcePictures\107.jpg, 19874 , 2018-04-15
k-means%2BBOF\sourcePictures\108.jpg, 5267 , 2018-04-15
k-means%2BBOF\sourcePictures\109.jpg, 18393 , 2018-04-15
k-means%2BBOF\sourcePictures\11.jpg, 6031 , 2018-04-14
k-means%2BBOF\sourcePictures\110.jpg, 5664 , 2018-04-15
k-means%2BBOF\sourcePictures\12.jpg, 7202 , 2018-04-14
k-means%2BBOF\sourcePictures\13.jpg, 5459 , 2018-04-14
k-means%2BBOF\sourcePictures\14.jpg, 16511 , 2018-04-14
k-means%2BBOF\sourcePictures\15.jpg, 16722 , 2018-04-14
k-means%2BBOF\sourcePictures\16.jpg, 17399 , 2018-04-14
k-means%2BBOF\sourcePictures\17.jpg, 18570 , 2018-04-14
k-means%2BBOF\sourcePictures\18.jpg, 21290 , 2018-04-14
k-means%2BBOF\sourcePictures\19.jpg, 8726 , 2018-04-14
k-means%2BBOF\sourcePictures\2.jpg, 18123 , 2018-04-14
k-means%2BBOF\sourcePictures\20.jpg, 15315 , 2018-04-14
k-means%2BBOF\sourcePictures\21.jpg, 16620 , 2018-04-14
k-means%2BBOF\sourcePictures\22.jpg, 10571 , 2018-04-14
k-means%2BBOF\sourcePictures\23.jpg, 3279 , 2018-04-14
k-means%2BBOF\sourcePictures\24.jpg, 15179 , 2018-04-14
k-means%2BBOF\sourcePictures\25.jpg, 4237 , 2018-04-14
k-means%2BBOF\sourcePictures\26.jpg, 16937 , 2018-04-14
k-means%2BBOF\sourcePictures\27.jpg, 8714 , 2018-04-14
k-means%2BBOF\sourcePictures\28.jpg, 6136 , 2018-04-14
k-means%2BBOF\sourcePictures\29.jpg, 30527 , 2018-04-14
k-means%2BBOF\sourcePictures\3.jpg, 16845 , 2018-04-14
k-means%2BBOF\sourcePictures\30.jpg, 31940 , 2018-04-14

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • fusion
    用于实现基于压缩感知在傅里叶系数域上的图像融合(For image fusion based on compressed sensing in the domain of Fourier coefficients)
    2021-04-02 22:49:06下载
    积分:1
  • MSR
    多尺度retinex算法的matlab程序,用着不错(The matlab program of multi-scale Retinex algorithm is well used)
    2019-04-21 19:34:23下载
    积分:1
  • 点云配准
    说明:  四种点云配准算法。FPFH,NDT,3DS…(Four point cloud registration algorithms.FPFH,NDT,3DS.)
    2021-04-18 08:58:52下载
    积分:1
  • TV去噪模型
    说明:  去噪模型TV,可用于图像去噪,效果良好,模型特别简单(The denoising model TV can be used for image denoising, the effect is good, and the model is particularly simple.)
    2020-07-01 15:34:57下载
    积分:1
  • yuanyuan
    给予分水岭的图像分割,包括源代码、测试图、实验报告(Given watershed image segmentation, including source code, test plans, test reports)
    2010-12-04 22:33:37下载
    积分:1
  • fenshujie
    博士论文,分数阶微积分在现代信号分析与图象处理中应用给出了详细的分析和探讨,论文覆盖面广,有着很多的实验结果和详尽的分析。(Ph.D. thesis, fractional calculus in a modern signal analysis and image processing application gives a detailed analysis and discussion, research papers covering a wide range, has a lot of experimental results and detailed analysis.)
    2010-02-02 13:19:46下载
    积分:1
  • openvcfushi
    基于openvc平台的,用vc语言实现的,根据输入的图像,对图像进行腐蚀操作。(Based on openvc platform, with vc language, according to the input image, the image erosion operation.)
    2011-10-16 09:47:57下载
    积分:1
  • ImageSceneRetrieval
    在Matlab中建了图形用户界面,采用不同特征提取方式,如gray,color,lbp,灰度共生矩阵GLCM等,对数据集中的影像进行场景检索。(Graphic user interface is built in Matlab. Scene retrieval of images in dataset is carried out by using different feature extraction methods, such as gray, color, lbp, gray level co-occurrence matrix (GLCM).)
    2018-11-08 17:44:32下载
    积分:1
  • vsnr_matlab_source
    说明:  比SSIM更新的图像质量评判算法VSNR(image quality assessment VSNR and its matlab code)
    2010-04-17 10:57:37下载
    积分:1
  • IMG_PCA
    说明:  Matlab 实现 一维 PCA 压缩解压 图像,可以设置 eigen value 数目,观看压缩结果。(Matlab to achieve one-dimensional PCA-extracting compressed images, the number of eigen value can be set to watch the results of compression.)
    2009-08-07 10:00:48下载
    积分:1
  • 696518资源总数
  • 106161会员总数
  • 5今日下载