登录
首页 » matlab » k-means+BOF

k-means+BOF

于 2020-11-28 发布 文件大小:11408KB
0 158
下载积分: 1 下载次数: 14

代码说明:

  提取sift特征,通过K均值聚类形成特征包,进行图像检索。(SIFT features are extracted and image packets are retrieved through K mean clustering.)

文件列表:

k-means%2BBOF, 0 , 2018-05-14
k-means%2BBOF\do_database.m, 30791 , 2015-09-30
k-means%2BBOF\do_demo.m, 1517 , 2018-04-19
k-means%2BBOF\do_descriptor.m, 6482 , 2015-08-27
k-means%2BBOF\do_diffofg.m, 464 , 2012-09-27
k-means%2BBOF\do_eucidean_distance.m, 304 , 2016-04-13
k-means%2BBOF\do_extrefine.m, 4368 , 2012-11-05
k-means%2BBOF\do_gaussian.m, 3029 , 2012-10-26
k-means%2BBOF\do_localmax.m, 2261 , 2012-11-13
k-means%2BBOF\do_orientation.m, 2765 , 2015-08-22
k-means%2BBOF\do_sift.m, 4493 , 2015-10-09
k-means%2BBOF\get_countVectors.m, 676 , 2016-04-13
k-means%2BBOF\get_sifts.m, 713 , 2016-04-13
k-means%2BBOF\get_singleVector.m, 460 , 2016-04-13
k-means%2BBOF\img_paths.txt, 4447 , 2018-04-19
k-means%2BBOF\K_Means.m, 839 , 2016-04-13
k-means%2BBOF\SIFT_feature, 0 , 2018-05-14
k-means%2BBOF\SIFT_feature\._.DS_Store, 4096 , 2015-10-07
k-means%2BBOF\SIFT_feature\._do_database.m, 4096 , 2015-10-07
k-means%2BBOF\SIFT_feature\._do_descriptor.m, 4096 , 2015-10-07
k-means%2BBOF\SIFT_feature\._do_sift.m, 4096 , 2015-10-07
k-means%2BBOF\SIFT_feature\.DS_Store, 6148 , 2015-09-02
k-means%2BBOF\SIFT_feature\demo-data, 0 , 2018-05-14
k-means%2BBOF\SIFT_feature\demo-data\1.jpg, 5524 , 2012-10-17
k-means%2BBOF\SIFT_feature\demo-data\2.jpg, 5571 , 2012-10-17
k-means%2BBOF\SIFT_feature\demo-data\5.jpg, 35129 , 2012-10-17
k-means%2BBOF\SIFT_feature\demo-data\6.jpg, 34931 , 2012-10-17
k-means%2BBOF\SIFT_feature\demo-data\7.jpg, 9539 , 2012-10-17
k-means%2BBOF\SIFT_feature\demo-data\beaver11.bmp, 189956 , 2012-09-27
k-means%2BBOF\SIFT_feature\demo-data\beaver13.bmp, 189956 , 2012-09-27
k-means%2BBOF\SIFT_feature\demo-data\einstein.pgm, 65596 , 2012-08-15
k-means%2BBOF\SIFT_feature\demo-data\GML_RANSAC_Matlab_Toolbox_0[1].2.rar, 19215 , 2015-08-19
k-means%2BBOF\SIFT_feature\demo-data\harrisandransac.rar, 446099 , 2015-08-19
k-means%2BBOF\SIFT_feature\demo-data\image068.JPG, 14060 , 2012-09-27
k-means%2BBOF\SIFT_feature\demo-data\image069.JPG, 13579 , 2012-09-27
k-means%2BBOF\SIFT_feature\demo-data\image1.jpg, 240943 , 2015-08-18
k-means%2BBOF\SIFT_feature\demo-data\image10.jpg, 63924 , 2015-08-21
k-means%2BBOF\SIFT_feature\demo-data\image11.jpg, 145849 , 2015-08-21
k-means%2BBOF\SIFT_feature\demo-data\image2.jpg, 393897 , 2015-08-18
k-means%2BBOF\SIFT_feature\demo-data\image3.jpg, 613687 , 2015-08-18
k-means%2BBOF\SIFT_feature\demo-data\image4.jpg, 659244 , 2015-08-18
k-means%2BBOF\SIFT_feature\demo-data\image5.jpg, 403386 , 2015-08-18
k-means%2BBOF\SIFT_feature\demo-data\image6.jpg, 36967 , 2015-08-18
k-means%2BBOF\SIFT_feature\demo-data\image7.jpg, 48612 , 2015-08-18
k-means%2BBOF\SIFT_feature\demo-data\image8.jpg, 92051 , 2015-08-18
k-means%2BBOF\SIFT_feature\demo-data\replace1.jpg, 2466289 , 2013-07-01
k-means%2BBOF\SIFT_feature\demo-data\replace2.jpg, 2812145 , 2013-07-01
k-means%2BBOF\SIFT_feature\demo-data\view01.png, 578897 , 2012-09-27
k-means%2BBOF\SIFT_feature\demo-data\view02.png, 574557 , 2012-09-27
k-means%2BBOF\SIFT_feature\do_database.m, 30791 , 2015-09-30
k-means%2BBOF\SIFT_feature\do_descriptor.m, 6482 , 2015-08-27
k-means%2BBOF\SIFT_feature\do_diffofg.m, 464 , 2012-09-27
k-means%2BBOF\SIFT_feature\do_extrefine.m, 4368 , 2012-11-05
k-means%2BBOF\SIFT_feature\do_gaussian.m, 3029 , 2012-10-26
k-means%2BBOF\SIFT_feature\do_localmax.m, 2261 , 2012-11-13
k-means%2BBOF\SIFT_feature\do_orientation.m, 2765 , 2015-08-22
k-means%2BBOF\SIFT_feature\do_sift.m, 4493 , 2015-10-09
k-means%2BBOF\SIFT_feature\smooth.m, 243 , 2012-11-13
k-means%2BBOF\SIFT_feature\util, 0 , 2018-05-14
k-means%2BBOF\SIFT_feature\util\appendimages.m, 359 , 2012-09-27
k-means%2BBOF\SIFT_feature\util\plotsiftframe.m, 1812 , 2012-09-27
k-means%2BBOF\SIFT_feature\util\plotss.m, 640 , 2015-07-31
k-means%2BBOF\SIFT_feature\util\tightsubplot.m, 1859 , 2012-09-27
k-means%2BBOF\smooth.m, 243 , 2012-11-13
k-means%2BBOF\sourcePictures, 0 , 2018-05-14
k-means%2BBOF\sourcePictures\1.jpg, 18138 , 2018-04-14
k-means%2BBOF\sourcePictures\10.jpg, 9506 , 2018-04-14
k-means%2BBOF\sourcePictures\100.jpg, 9568 , 2018-04-15
k-means%2BBOF\sourcePictures\101.jpg, 15883 , 2018-04-15
k-means%2BBOF\sourcePictures\102.jpg, 5979 , 2018-04-15
k-means%2BBOF\sourcePictures\103.jpg, 4686 , 2018-04-15
k-means%2BBOF\sourcePictures\104.jpg, 24421 , 2018-04-15
k-means%2BBOF\sourcePictures\105.jpg, 25652 , 2018-04-15
k-means%2BBOF\sourcePictures\106.jpg, 9463 , 2018-04-15
k-means%2BBOF\sourcePictures\107.jpg, 19874 , 2018-04-15
k-means%2BBOF\sourcePictures\108.jpg, 5267 , 2018-04-15
k-means%2BBOF\sourcePictures\109.jpg, 18393 , 2018-04-15
k-means%2BBOF\sourcePictures\11.jpg, 6031 , 2018-04-14
k-means%2BBOF\sourcePictures\110.jpg, 5664 , 2018-04-15
k-means%2BBOF\sourcePictures\12.jpg, 7202 , 2018-04-14
k-means%2BBOF\sourcePictures\13.jpg, 5459 , 2018-04-14
k-means%2BBOF\sourcePictures\14.jpg, 16511 , 2018-04-14
k-means%2BBOF\sourcePictures\15.jpg, 16722 , 2018-04-14
k-means%2BBOF\sourcePictures\16.jpg, 17399 , 2018-04-14
k-means%2BBOF\sourcePictures\17.jpg, 18570 , 2018-04-14
k-means%2BBOF\sourcePictures\18.jpg, 21290 , 2018-04-14
k-means%2BBOF\sourcePictures\19.jpg, 8726 , 2018-04-14
k-means%2BBOF\sourcePictures\2.jpg, 18123 , 2018-04-14
k-means%2BBOF\sourcePictures\20.jpg, 15315 , 2018-04-14
k-means%2BBOF\sourcePictures\21.jpg, 16620 , 2018-04-14
k-means%2BBOF\sourcePictures\22.jpg, 10571 , 2018-04-14
k-means%2BBOF\sourcePictures\23.jpg, 3279 , 2018-04-14
k-means%2BBOF\sourcePictures\24.jpg, 15179 , 2018-04-14
k-means%2BBOF\sourcePictures\25.jpg, 4237 , 2018-04-14
k-means%2BBOF\sourcePictures\26.jpg, 16937 , 2018-04-14
k-means%2BBOF\sourcePictures\27.jpg, 8714 , 2018-04-14
k-means%2BBOF\sourcePictures\28.jpg, 6136 , 2018-04-14
k-means%2BBOF\sourcePictures\29.jpg, 30527 , 2018-04-14
k-means%2BBOF\sourcePictures\3.jpg, 16845 , 2018-04-14
k-means%2BBOF\sourcePictures\30.jpg, 31940 , 2018-04-14

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • adaptiveParithmetic
    自适应算术编码的例子,使用的是整数算术编码(Examples of adaptive arithmetic coding, the use of integer arithmetic coding)
    2013-01-23 21:57:33下载
    积分:1
  • image_matching123
    图像配准,利用互相关的方法进行图像配准,能达到良好效果(Image registration, the use of the cross-correlation method of image registration, and can achieve good results)
    2013-01-06 10:28:30下载
    积分:1
  • rgb2hsv
    实现RGB颜色空间到HSV颜色空间变换的函数。(achieve RGB color space to the HSV color space conversion function.)
    2006-06-12 22:22:08下载
    积分:1
  • VCdetuxingchuli
    VC的图形处理以及简单的程序设计,简单易懂(VC graphics processing and simple program design, simple and understandable )
    2011-12-13 16:41:34下载
    积分:1
  • Hu-moment
    计算图像的几何不变矩—Hu矩,以及图像的相似度,在vc下实现。(Calculate the geometric image invariant moments-Hu moments, as well as the similarity of the image, achieved under vc.)
    2014-01-18 11:02:52下载
    积分:1
  • shock-filter
    冲击滤波模型是用用于图像边缘增强的一种常用算法(Impact filtering model is a commonly used algorithm for image edge enhancement)
    2012-11-06 16:18:00下载
    积分:1
  • text-detection
    在视频文字检测以及提取方面,比较好的参考论文,大家可以下载参考!(Video text detection and extraction, a good reference papers, everyone can download the reference!)
    2012-09-10 08:23:48下载
    积分:1
  • BMP del
    实现两幅bmp图像相减得到最终图像并显示(Realize two BMP image subtraction, get the final image and display)
    2017-10-10 17:19:26下载
    积分:1
  • 源程序
    利用hough变换检测圆,有RHT,随机hough变换,以及一些改进(Using Hough transform to detect the circle)
    2018-04-22 18:08:35下载
    积分:1
  • sin-and-nml
    正余弦+NLM滤波器和正余弦与其他滤波器的视觉效果与数值信息比较(Sine and Cosine+NLM cosine filter and compare numeric information with visual effects and other filters)
    2020-11-26 16:39:31下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载