-
图像去雾质量评价标准
说明: 代码包含多种图像去雾质量评价标准,PSNR,彩色图像信息熵,WPSNR等,MATLAB可直接使用(Code contains a variety of image defogging quality evaluation criteria, PSNR, color image information entropy, WPSNR, etc., which can be directly used by MATLAB.)
- 2019-01-04 10:45:47下载
- 积分:1
-
lifangticaisekongzhi
说明: 彩色立方体控制 彩色立方体 控制 彩色立方体 控制 彩色立方体(color cube control color cube c ontrol co lor cube with color cube control system color cube)
- 2006-04-24 11:10:12下载
- 积分:1
-
BM3D
说明: 自己实现的BM3D图像去噪算法。它首先把图像分成一定大小的块,根据图像块之间的相似性,把具有相似结构的二维图像块组合在一起形成三维数组,然后用联合滤波的方法对这些三维数组进行处理,最后,通过逆变换,把处理后的结果返回到原图像中,从而得到去噪后的图像。(Image Denosing by Sparse 3-D Transform-Domain Collaborative Filtering.)
- 2021-04-01 16:29:08下载
- 积分:1
-
objLoader
opengl 导入obj以及纹理,并且读入mtl啦啦啦啦绿撒的发生大(opengl objfsdagfadgadsfgsa)
- 2017-11-12 22:39:18下载
- 积分:1
-
MRI Brain Scan_segmentation
这次上传的代码是关于MRI Brain Scan_segmentation用的代码,希望能对大家有用(this code is uploaded on Scan_segmentation Brain MRI of the code, we hope that the useful)
- 2005-08-15 22:46:07下载
- 积分:1
-
FeatureExtractionFromPointClouds
点云特征提取 详细 实用 经典的讲述过程及方法(Point Cloud Feature Extraction practical details about the processes and methods of classic)
- 2020-07-09 10:18:55下载
- 积分:1
-
drawingelipse
Algorithm for drawing elipse
- 2009-11-24 09:30:27下载
- 积分:1
-
dfs
深度搜索算法用于一幅二值图像,指定开始点和目标点(deep first search method is used for binary image,with assigned start and end point)
- 2009-04-28 16:42:47下载
- 积分:1
-
小目标视频
说明: 丰富红外小目标视频库数据资料,比较短,不是特别清晰。(Enriching Infrared Small Target Video Library)
- 2021-04-29 00:18:43下载
- 积分:1
-
PCA
主成分分析 ( Principal Component Analysis , PCA )或者主元分析。是一种掌握事物主要矛盾的统计分析方法,它可以从多元事物中解析出主要影响因素,揭示事物的本质,简化复杂的问题。计算主成分的目的是将高维数据投影到较低维空间。给定 n 个变量的 m 个观察值,形成一个 n ′ m 的数据矩阵, n 通常比较大。对于一个由多个变量描述的复杂事物,人们难以认识,那么是否可以抓住事物主要方面进行重点分析呢?如果事物的主要方面刚好体现在几个主要变量上,我们只需要将这几个变量分离出来,进行详细分析。但是,在一般情况下,并不能直接找出这样的关键变量。这时我们可以用原有变量的线性组合来表示事物的主要方面, PCA 就是这样一种分析方法。(Principal component analysis (Principal Component Analysis, PCA) or PCA. Is a statistical method to grasp the principal contradiction of things, it can be resolved diverse things out the main factors, revealing the essence of things, simplifying complex problems. The purpose of calculating the main component of high-dimensional data is projected to a lower dimensional space. Given n variables of m observations, forming an n ' m of the data matrix, n is usually large. For a complex matters described by several variables, it is difficult to know, so if you can grab something to focus on key aspects of analysis? If the main aspects of things just reflected on several key variables, we only need to separate out these few variables, for detailed analysis. However, in general, does not directly identify this critical variables. Then we can represent the major aspects of things with a linear combination of the original variables, PCA is one such analysis.)
- 2021-01-28 21:48:40下载
- 积分:1