登录
首页 » matlab » DeepLearnToolbox-master

DeepLearnToolbox-master

于 2021-04-14 发布 文件大小:28779KB
0 226
下载积分: 1 下载次数: 111

代码说明:

  这是深度学习的常用工具箱,里面包括常用的自动编码器、卷积神经网络和深度置信网络的函数( This is a common toolbox depth study, which includes functions commonly used automatic encoder, convolutional neural network and depth of belief networks)

文件列表:

DeepLearnToolbox-master
.......................\DeepLearnToolbox-master
.......................\.......................\.travis.yml,249,2014-04-16
.......................\.......................\CAE
.......................\.......................\...\caeapplygrads.m,1219,2014-04-16
.......................\.......................\...\caebbp.m,917,2014-04-16
.......................\.......................\...\caebp.m,1011,2014-04-16
.......................\.......................\...\caedown.m,259,2014-04-16
.......................\.......................\...\caeexamples.m,754,2014-04-16
.......................\.......................\...\caenumgradcheck.m,3618,2014-04-16
.......................\.......................\...\caesdlm.m,845,2014-04-16
.......................\.......................\...\caetrain.m,1148,2014-04-16
.......................\.......................\...\caeup.m,489,2014-04-16
.......................\.......................\...\max3d.m,173,2014-04-16
.......................\.......................\...\scaesetup.m,1937,2014-04-16
.......................\.......................\...\scaetrain.m,270,2014-04-16
.......................\.......................\CNN
.......................\.......................\...\cnnapplygrads.m,575,2014-04-16
.......................\.......................\...\cnnbp.m,2141,2014-04-16
.......................\.......................\...\cnnff.m,1774,2014-04-16
.......................\.......................\...\cnnnumgradcheck.m,3430,2014-04-16
.......................\.......................\...\cnnsetup.m,2020,2014-04-16
.......................\.......................\...\cnntest.m,193,2014-04-16
.......................\.......................\...\cnntrain.m,845,2014-04-16
.......................\.......................\CONTRIBUTING.md,544,2014-04-16
.......................\.......................\create_readme.sh,744,2014-04-16
.......................\.......................\data
.......................\.......................\....\mnist_uint8.mat,14735220,2014-04-16
.......................\.......................\DBN
.......................\.......................\...\dbnsetup.m,557,2014-04-16
.......................\.......................\...\dbntrain.m,232,2014-04-16
.......................\.......................\...\dbnunfoldtonn.m,425,2014-04-16
.......................\.......................\...\rbmdown.m,90,2014-04-16
.......................\.......................\...\rbmtrain.m,1401,2014-04-16
.......................\.......................\...\rbmup.m,89,2014-04-16
.......................\.......................\htm" target=_blank>LICENSE,1313,2014-04-16
.......................\.......................\NN
.......................\.......................\..\nnapplygrads.m,628,2014-04-16
.......................\.......................\..\nnbp.m,1638,2014-04-16
.......................\.......................\..\nnchecknumgrad.m,704,2014-04-16
.......................\.......................\..\nneval.m,780,2014-04-16
.......................\.......................\..\nnff.m,1849,2014-04-16
.......................\.......................\..\nnpredict.m,192,2014-04-16
.......................\.......................\..\nnsetup.m,1844,2014-04-16
.......................\.......................\..\nntest.m,184,2014-04-16
.......................\.......................\..\nntrain.m,2414,2014-04-16
.......................\.......................\..\nnupdatefigures.m,1858,2014-04-16
.......................\.......................\README.md,8730,2014-04-16
.......................\.......................\README_header.md,2256,2014-04-16
.......................\.......................\REFS.md,950,2014-04-16
.......................\.......................\SAE
.......................\.......................\...\saesetup.m,132,2014-04-16
.......................\.......................\...\saetrain.m,308,2014-04-16
.......................\.......................\tests
.......................\.......................\.....\mnist_uint8.mat,14735220,2014-04-16
.......................\.......................\.....\runalltests.m,165,2014-04-16
.......................\.......................\.....\test_cnn_gradients_are_numerically_correct.m,552,2014-04-16
.......................\.......................\.....\test_example_CNN.m,1073,2014-05-05
.......................\.......................\.....\test_example_DBN.m,1031,2014-04-16
.......................\.......................\.....\test_example_NN.m,3247,2014-04-16
.......................\.......................\.....\test_example_SAE.m,934,2014-04-16
.......................\.......................\.....\test_nn_gradients_are_numerically_correct.m,749,2014-04-16
.......................\.......................\util
.......................\.......................\....\allcomb.m,2618,2014-04-16
.......................\.......................\....\expand.m,1958,2014-04-16
.......................\.......................\....\flicker.m,208,2014-04-16
.......................\.......................\....\flipall.m,80,2014-04-16
.......................\.......................\....\fliplrf.m,543,2014-04-16
.......................\.......................\....\flipudf.m,576,2014-04-16
.......................\.......................\....\im2patches.m,313,2014-04-16
.......................\.......................\....\isOctave.m,108,2014-04-16
.......................\.......................\....\makeLMfilters.m,1895,2014-04-16
.......................\.......................\....\myOctaveVersion.m,169,2014-04-16
.......................\.......................\....\normalize.m,97,2014-04-16
.......................\.......................\....\patches2im.m,242,2014-04-16
.......................\.......................\....\randcorr.m,283,2014-04-16
.......................\.......................\....\randp.m,2083,2014-04-16
.......................\.......................\....\rnd.m,49,2014-04-16
.......................\.......................\....\sigm.m,48,2014-04-16
.......................\.......................\....\sigmrnd.m,126,2014-04-16
.......................\.......................\....\softmax.m,256,2014-04-16
.......................\.......................\....\tanh_opt.m,54,2014-04-16
.......................\.......................\....\visualize.m,1072,2014-04-16
.......................\.......................\....\whiten.m,183,2014-04-16
.......................\.......................\....\zscore.m,137,2014-04-16

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Sparse-Mixing-Estimators
    图像超分辨率重建算法,通过稀疏混合估计来实现,效果不错。(Image super-resolution reconstruction algorithm, by mixing estimates sparse achieved good results.)
    2013-11-11 19:10:38下载
    积分:1
  • Partial-differential-equations-student-solutions-
    Partial differential equations student solutions manual
    2014-02-19 10:15:28下载
    积分:1
  • hankel
    Fast Hankel Transform Algorithm (Fast Hankel Transform Algorithm)
    2008-02-09 05:12:03下载
    积分:1
  • CRC(Matlab)
    CRC校验码的Matlab源程序,希望对大家有帮助(CRC Checksum Matlab source code, I hope all of you help)
    2007-11-29 16:33:09下载
    积分:1
  • SimulationonMATLAB
    说明:  利用MATLAB 提供的V2Realm Builder 建立倒立摆三维虚拟场景(V2Realm Builder using MATLAB provides three-dimensional virtual scene to establish an inverted pendulum)
    2011-02-20 20:41:47下载
    积分:1
  • the-algorithm-of-clustering
    几种聚类算法的比较论文,希望对大家的论文有所帮助(Comparison of several clustering algorithms paper, we want to help the paper)
    2011-10-28 16:12:52下载
    积分:1
  • 17556m_seq
    m序列的matlab实现,m序列的matlab实现(Implementation of m sequences)
    2013-11-04 22:17:50下载
    积分:1
  • release-matlab
    详细阐述如何发布matlab程序的方法,尤其适合GUI界面的发布,叙述详细到位。(Elaborate method of how to publish matlab program, especially for the release of a GUI interface, described in detail in place.)
    2013-11-12 16:46:03下载
    积分:1
  • BPclassification
    BP学习算法应用——模式分类 应用动量BP学习算法对UCI提供的经典数据库——鸢尾属植物数据库进行分类,速度快,精度高。iris.arff为数据库文件,可用Weka数据挖掘软件打开。Iris.csv为源代码读取的数据文件,通过Weka软件转换得到。 将源文件Iris_classify.m和Iris.csv文件放入matlab的work文件夹中直接运行即可。(BP learning algorithm applications- the application of pattern classification momentum BP learning algorithm to provide a classic UCI database- iris database classification, high speed and accuracy. iris.arff for the database file that can be used to open Weka data mining software. Iris.csv for the source code to read the data files have been converted through Weka software. Iris_classify.m the source document and document Iris.csv Add matlab folder of work can be directly run.)
    2020-12-18 00:29:11下载
    积分:1
  • classficion
    文本分类用数据 20字 分类算法 毕业设计(Text classification data 20 words or classification algorithm design)
    2012-05-27 22:17:18下载
    积分:1
  • 696518资源总数
  • 105873会员总数
  • 12今日下载