-
图像去雾算法源代码c++
图像去雾c++版源代码,实现效果还不错,可直接运行。(Fog to remove the c++ version of the source code, the effect is not bad, can be run directly.)
- 2020-09-02 18:08:07下载
- 积分:1
-
Fast_Discrete_Curvelet_Transform
Fast Discrete Curvelet Transform有正反变换,各个程序里面的参数都有详细的说明.(Fast Discrete Curvelet Transform are pros and transform, inside the various parameters have detailed explanations.)
- 2007-04-13 19:25:56下载
- 积分:1
-
Digital-Image-Processing-radon-Code
数字图像处理radon+matlab变换算法代码(Digital image processing algorithms transform radon+ matlab code)
- 2011-05-26 15:01:51下载
- 积分:1
-
Binary-Thresholding-new-approch
Image corrosion, swelling, binarization processing, image binary segmentation procedure matlab gui
- 2012-07-14 01:23:42下载
- 积分:1
-
medcalinhance
本程序实现医学图像的增强,实验显示,处理后的医学图像轮廓清晰,可识性较好。(This procedure to achieve medical image enhancement, experiments showed that the treated medical image outline a clear, identifiable better.)
- 2021-01-26 23:18:41下载
- 积分:1
-
Zernike
Zernike矩是一种具有尺度、移位和旋转不变性的正交不变矩,本设计的目的就是利用Zernike不变矩设计一种图像检索系统,该系统能够充分验证Zerinike矩的不变性及其在图像检索中的优良性能。具体内容包括:
(1) 图像特征提取、统计特征提取;
(2) Zernike不变矩及其应用方法;
(3) 基于Zernike不变矩的图像检索系统。
(Zernike moments is a scale, shift and rotation invariant orthogonal invariant moments, the purpose of this design is the use of Zernike invariant moments design an image retrieval system, the system can fully verify Zerinike moments invariance and itsexcellent performance in image retrieval. Specific content includes:
(1) image feature extraction, statistical feature extraction
(2) Zernike invariant moments and its application method
(3) based on Zernike Moment Invariant image retrieval system)
- 2012-11-21 09:01:15下载
- 积分:1
-
SaliencyToolbox2.2
视觉注意力模型,寻找感兴趣区域,模仿人眼找出最感兴趣的区域,再找出第二感兴趣的区域,以此类推(Visual attention model to find the region of interest, to imitate the human eye to identify the most interesting region, and then find the second region of interest, and so on)
- 2009-05-19 16:21:51下载
- 积分:1
-
siftDemoV4
图像匹配的实现,其中match.m:测试程序,sift.m :尺度不变特征变换(SIFT算法)的核心算法程序,appendimages.m: 该函数创建一个新的图像分别包含两个匹配的图像和他们之间的匹配对的连接直线,可以运行。
(The realization of image matching, which match.m: test program, sift.m: scale-invariant feature transform (SIFT algorithm) of the core algorithm, appendimages.m: This function creates a new image each consists of two images and matching match between them on the connection line, you can run.)
- 2011-10-14 08:44:40下载
- 积分:1
-
QIM_DCT
这是一个基于DCT域QIM的音频信息伪装算法的源代码,输出信噪比(DCT QIM MATLAB)
- 2020-10-29 11:09:56下载
- 积分:1
-
PG_BOW_DEMO
图像的特征用到了Dense Sift,通过Bag of Words词袋模型进行描述,当然一般来说是用训练集的来构建词典,因为我们还没有测试集呢。虽然测试集是你拿来测试的,但是实际应用中谁知道测试的图片是啥,所以构建BoW词典我这里也只用训练集。
其实BoW的思想很简单,虽然很多人也问过我,但是只要理解了如何构建词典以及如何将图像映射到词典维上去就行了,面试中也经常问到我这个问题,不知道你们都怎么用生动形象的语言来描述这个问题?
用BoW描述完图像之后,指的是将训练集以及测试集的图像都用BoW模型描述了,就可以用SVM训练分类模型进行分类了。
在这里除了用SVM的RBF核,还自己定义了一种核: histogram intersection kernel,直方图正交核。因为很多论文说这个核好,并且实验结果很显然。能从理论上证明一下么?通过自定义核也可以了解怎么使用自定义核来用SVM进行分类。(Image features used in a Dense Sift, by the Bag of Words bag model to describe the word, of course, the training set is generally used to build the dictionary, because we do not test set. Although the test set is used as the test you, but who knows the practical application of the test image is valid, so I am here to build BoW dictionary only the training set.
In fact, BoW idea is very simple, although many people have asked me, but as long as you understand how to build a dictionary and how to image map to the dictionary D up on the line, and interviews are often asked me this question, do not know you all how to use vivid language to describe this problem?
After complete description of the image with BoW, refers to the training set and test set of images are described with the BoW model, the training of SVM classification model can be classified.
Apart from having to use the RBF kernel SVM, but also their own definition of a nuclear: histogram intersection kernel, histogram )
- 2011-11-01 17:01:09下载
- 积分:1