登录
首页 » matlab » mvgc_v1.0

mvgc_v1.0

于 2020-12-18 发布 文件大小:971KB
0 268
下载积分: 1 下载次数: 6

代码说明:

  多元格兰杰因果检验的matlab程序包,是继GCCA之后的升级版,分析结果更加简洁,直观(The matlab package of multivariate Grainger causality test is an upgraded version after GCCA. The result is more concise and intuitive.)

文件列表:

mvgc_v1.0\mvgc_v1.0, 0 , 2018-06-01
mvgc_v1.0\mvgc_v1.0\C, 0 , 2018-06-01
mvgc_v1.0\mvgc_v1.0\C\genvar_mex.c, 1277 , 2013-01-15
mvgc_v1.0\mvgc_v1.0\core, 0 , 2018-06-01
mvgc_v1.0\mvgc_v1.0\core\autocov_to_cpsd.m, 2021 , 2018-06-01
mvgc_v1.0\mvgc_v1.0\core\autocov_to_var.m, 3965 , 2018-06-01
mvgc_v1.0\mvgc_v1.0\core\autocov_xform.m, 4869 , 2018-06-01
mvgc_v1.0\mvgc_v1.0\core\cpsd_to_autocov.m, 2207 , 2018-06-01
mvgc_v1.0\mvgc_v1.0\core\cpsd_to_var.m, 4535 , 2018-06-01
mvgc_v1.0\mvgc_v1.0\core\cpsd_xform.m, 2076 , 2018-06-01
mvgc_v1.0\mvgc_v1.0\core\tsdata_to_autocov.m, 2558 , 2018-06-01
mvgc_v1.0\mvgc_v1.0\core\tsdata_to_cpsd.m, 5478 , 2018-06-01
mvgc_v1.0\mvgc_v1.0\core\tsdata_to_infocrit.m, 9572 , 2018-06-01
mvgc_v1.0\mvgc_v1.0\core\tsdata_to_var.m, 6214 , 2018-06-01
mvgc_v1.0\mvgc_v1.0\core\var_to_autocov.m, 9923 , 2018-06-01
mvgc_v1.0\mvgc_v1.0\core\var_to_cpsd.m, 1620 , 2018-06-01
mvgc_v1.0\mvgc_v1.0\core\var_to_tsdata.m, 3107 , 2018-06-01
mvgc_v1.0\mvgc_v1.0\core\var_to_tsdata_nonstat.m, 2916 , 2018-06-01
mvgc_v1.0\mvgc_v1.0\demo, 0 , 2018-06-03
mvgc_v1.0\mvgc_v1.0\demo\mvgc_demo.asv, 8987 , 2018-06-03
mvgc_v1.0\mvgc_v1.0\demo\mvgc_demo.m, 8987 , 2018-06-03
mvgc_v1.0\mvgc_v1.0\demo\mvgc_demo_bootstrap.m, 4075 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\demo\mvgc_demo_GCCA.m, 5683 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\demo\mvgc_demo_nonstationary.m, 5125 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\demo\mvgc_demo_permtest.m, 5524 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\demo\mvgc_demo_stats.m, 8048 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\demo\var5_test.m, 814 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\demo\var9_test.m, 3157 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs, 0 , 2018-06-01
mvgc_v1.0\mvgc_v1.0\docs\html, 0 , 2018-06-01
mvgc_v1.0\mvgc_v1.0\docs\html\autocov_to_cpsd.html, 8174 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\autocov_to_mvgc.html, 8532 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\autocov_to_pwcgc.html, 8582 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\autocov_to_smvgc.html, 14097 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\autocov_to_spwcgc.html, 11676 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\autocov_to_var.html, 11532 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\autocov_xform.html, 12584 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\bfft.html, 6159 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\bifft.html, 6214 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\bootstrap_tsdata_to_mvgc.html, 11548 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\bootstrap_tsdata_to_pwcgc.html, 11343 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\bootstrap_tsdata_to_smvgc.html, 12737 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\bootstrap_tsdata_to_spwcgc.html, 12136 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\chi2cdf.html, 4321 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\chi2inv.html, 4321 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\consistency.html, 7760 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\cov2corr.html, 5723 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\cpsd_to_autocov.html, 8124 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\cpsd_to_var.html, 11858 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\cpsd_xform.html, 7729 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\demean.html, 7287 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\dlyap.html, 8083 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\dlyap_aitr.html, 9378 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\empirical_cdf.html, 9149 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\empirical_cdfi.html, 9582 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\empirical_confint.html, 7945 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\empirical_cval.html, 7700 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\empirical_pval.html, 8807 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\empirical_var_to_mvgc.html, 12054 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\empirical_var_to_pwcgc.html, 12849 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\empirical_var_to_smvgc.html, 13243 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\empirical_var_to_spwcgc.html, 13908 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\eq_ac2cpsd.png, 1659 , 2013-01-15
mvgc_v1.0\mvgc_v1.0\docs\html\eq_aitr.png, 1831 , 2013-01-15
mvgc_v1.0\mvgc_v1.0\docs\html\eq_cpsd2ac.png, 1854 , 2013-01-15
mvgc_v1.0\mvgc_v1.0\docs\html\eq_dlyap.png, 912 , 2013-01-15
mvgc_v1.0\mvgc_v1.0\docs\html\eq_mvgc.png, 1169 , 2013-01-15
mvgc_v1.0\mvgc_v1.0\docs\html\eq_mvgc_pwc.png, 1169 , 2013-01-15
mvgc_v1.0\mvgc_v1.0\docs\html\eq_smvgc.png, 879 , 2013-01-15
mvgc_v1.0\mvgc_v1.0\docs\html\eq_smvgc_int.png, 1670 , 2013-01-15
mvgc_v1.0\mvgc_v1.0\docs\html\eq_smvgc_pwc.png, 1310 , 2013-01-15
mvgc_v1.0\mvgc_v1.0\docs\html\eq_smvgc_uncond.png, 814 , 2013-01-15
mvgc_v1.0\mvgc_v1.0\docs\html\eq_var.png, 1704 , 2013-01-15
mvgc_v1.0\mvgc_v1.0\docs\html\eq_varnn.png, 1177 , 2013-01-15
mvgc_v1.0\mvgc_v1.0\docs\html\eq_vma.png, 1765 , 2013-01-15
mvgc_v1.0\mvgc_v1.0\docs\html\eq_yweqs.png, 1611 , 2013-01-15
mvgc_v1.0\mvgc_v1.0\docs\html\fexists.html, 4459 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\gamcdf.html, 4615 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\gaminv.html, 5306 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\gampdf.html, 4949 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\GCCA_tsdata_to_mvgc.html, 11505 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\GCCA_tsdata_to_pwcgc.html, 13158 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\GCCA_tsdata_to_smvgc.html, 13498 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\genvar.html, 7834 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\get_crand.html, 6599 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\get_hostname.html, 6862 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\get_urand.html, 6371 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\helpon.html, 6250 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\helptoc.xml, 9286 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\ii_acseq.png, 1250 , 2013-01-15
mvgc_v1.0\mvgc_v1.0\docs\html\ii_dlyapre.png, 727 , 2013-01-15
mvgc_v1.0\mvgc_v1.0\docs\html\ii_inej.png, 1385 , 2013-01-15
mvgc_v1.0\mvgc_v1.0\docs\html\ii_nu.png, 537 , 2013-01-15
mvgc_v1.0\mvgc_v1.0\docs\html\ii_Sigma.png, 575 , 2013-01-15
mvgc_v1.0\mvgc_v1.0\docs\html\infocrit.html, 6867 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\isbad.html, 6484 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\isint.html, 5317 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\isposdef.html, 5824 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\lyapslv.html, 5077 , 2014-03-27
mvgc_v1.0\mvgc_v1.0\docs\html\make_legacy.html, 6240 , 2014-03-27

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • IEEE-2013-power
    IEEE 2013 base papers on power electronics
    2013-09-25 23:56:17下载
    积分:1
  • fangzhen chengxv
    说明:  仿真轴承故障的振动信号,显示时域波形和频域波形。(Vibration signals of bearing faults are simulated and time domain waveforms and frequency domain waveforms are displayed.)
    2019-03-06 18:10:41下载
    积分:1
  • Falkner_Skan
    说明:  matlab code from in the problem in numerical caculation.
    2020-06-21 03:20:01下载
    积分:1
  • opticaltransmissionfibonacci
    用MATLAB计算Fibonacci超晶格的光透射率(MATLAB computing Fibonacci superlattice with light transmission rate)
    2010-08-09 17:33:48下载
    积分:1
  • jlab
    JLAB is a set of Matlab functions I have written or co-written over the past fifteen years for the purpose of analyzing data. It consists of four hundred m-files spanning thirty thousand lines of code. JLAB includes functions ranging in complexity from one-line aliases to high-level algorithms for certain specialized tasks. These have been collected together and made publicly available for you to use, modify, and --- subject to certain very reasonable constraints --- to redistribute. Some of the highlights are: a suite of functions for the rapid manipulation of multi-component, potentially multi-dimensional datasets a systematic way of dealing with datasets having components of non-uniform length tools for fine-tuning figures using compact, straightforward statements and specialized functions for spectral and time / frequency analysis, including advanced wavelet algorithms developed by myself and collaborators. (JLAB is a set of Matlab functions I have written or co-written over the past fifteen years for the purpose of analyzing data. It consists of four hundred m-files spanning thirty thousand lines of code. JLAB includes functions ranging in complexity from one-line aliases to high-level algorithms for certain specialized tasks. These have been collected together and made publicly available for you to use, modify, and--- subject to certain very reasonable constraints--- to redistribute. Some of the highlights are: a suite of functions for the rapid manipulation of multi-component, potentially multi-dimensional datasets a systematic way of dealing with datasets having components of non-uniform length tools for fine-tuning figures using compact, straightforward statements and specialized functions for spectral and time/frequency analysis, including advanced wavelet algorithms developed by myself and collaborators. )
    2008-05-02 09:28:58下载
    积分:1
  • Arnold
    说明:  Arnold置乱算法代码,能根据Arnold映射实验二维图像的像素坐标置乱加密(Arnold scrambling algorithm code, according to Arnold experimental two-dimensional image map coordinates of the pixel scrambling encryption)
    2010-04-12 18:43:59下载
    积分:1
  • features-dimensionality-reduction
    特征降维方法,其中包含有典型的特征组合方式——PCA和特征选择中的SFFS,SBS,SFS。共四类常用的特征降维方式。(different features dimensionality reduction methods.)
    2012-01-05 09:59:03下载
    积分:1
  • PSO-evolutionarycomputation
    粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),有Eberhart博士和kennedy博士发明。源于对鸟群捕食的行为研究 PSO同遗传算法类似,是一种基于叠代的优化工具。系统初始化为一组随机解,通过叠代搜寻最优值。但是并没有遗传算法用的交叉(crossover)以及变异(mutation)。而是粒子在解空间追随最优的粒子进行搜索。详细的步骤以后的章节介绍 同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域(Particle Swarm Optimization (PSO) is an evolutionary computation technique (evolutionary computation), has Dr. Eberhart and Dr. kennedy invention. Deriving from the behavior of birds of prey PSO with genetic algorithm is similar to an iterative optimization-based tools. System initialization for a group of random solutions, through the iterative search for optimal values. But there is no cross-genetic algorithm used (crossover) and mutation (mutation). But the particles in the solution space of the particles to follow the optimal search. In detail the steps after the introduction sections compared with the genetic algorithm, PSO has the advantage of being simple and easy and did not realize many of the parameters need to be adjusted. Has been widely applied to function optimization, neural network training, fuzzy system control, as well as other genetic algorithm applications)
    2008-03-19 20:51:36下载
    积分:1
  • MIMO-OFDM_system_channel_estimation
    这是MIMO-OFDM系统不同信道估计算法的对比分析(MIMO-OFDM system channel estimation algorithms in different Comparison)
    2010-05-14 10:21:57下载
    积分:1
  • seg
    source code for ocr in matlab
    2009-12-29 16:51:23下载
    积分:1
  • 696518资源总数
  • 106208会员总数
  • 21今日下载