登录
首页 » matlab » SHMFunctions

SHMFunctions

于 2016-04-18 发布 文件大小:325KB
0 174
下载积分: 1 下载次数: 18

代码说明:

  美 Los Alamos实验室 结构健康监测SHM MATLAB工具包(Structural Health MOnitoring (SHM) MATLAB toolbox)

文件列表:

SHMFunctions
............\Auxiliary
............\.........\Plotting
............\.........\........\labelPlot_shm.m,1755,2014-05-31
............\.........\SensorSupport
............\.........\.............\OptimalSensorPlacement
............\.........\.............\......................\Geometry
............\.........\.............\......................\........\addResp2Geom_shm.m,2101,2014-05-31
............\.........\.............\......................\........\getElementCentroids_shm.m,1008,2014-05-31
............\.........\.............\......................\........\getSensorLayout_shm.m,1958,2014-05-31
............\.........\.............\......................\........\nodeElementPlot_shm.m,3859,2014-05-31
............\.........\.............\......................\........\responseInterp_shm.m,3689,2014-05-31
............\.........\.............\......................\OSP_FisherInfoEIV_shm.m,3848,2014-05-31
............\.........\.............\......................\OSP_MaxNorm_shm.m,5815,2014-05-31
............\.........\.............\SensorDiagnostic
............\.........\.............\................\sdAutoclassify_shm.m,5775,2014-05-31
............\.........\.............\................\sdFeature_shm.m,2648,2014-05-31
............\.........\.............\................\sdPlot_shm.m,5023,2014-05-31
............\DataAcquisition
............\...............\bandLimWhiteNoise_shm.m,1606,2014-05-31
............\...............\buildPairList_shm.m,1965,2014-05-31
............\...............\getGausModSin_shm.m,1929,2014-05-31
............\...............\NationalInstrumentsHighSpeed
............\...............\............................\niFgen.mdd,216037,2011-01-05
............\...............\............................\niScope.mdd,145746,2011-01-05
............\...............\............................\niSwitch.mdd,89139,2011-01-05
............\...............\............................\niTclk.mdd,1941,2011-01-05
............\...............\............................\NI_FGEN_InitConfig_shm.m,1816,2014-05-31
............\...............\............................\NI_FGEN_PrepWave_shm.m,1682,2014-05-31
............\...............\............................\NI_FGEN_SetOptions_shm.m,1929,2014-05-31
............\...............\............................\NI_multiplexSession_shm.m,3306,2014-05-31
............\...............\............................\NI_SCOPE_FetchWaves_shm.m,1670,2014-05-31
............\...............\............................\NI_SCOPE_InitConfig_shm.m,2190,2014-05-31
............\...............\............................\NI_SCOPE_SetOptions_shm.m,2209,2014-05-31
............\...............\............................\NI_SWITCH_Connect_shm.m,2432,2014-05-31
............\...............\............................\NI_SWITCH_Init_shm.m,1002,2014-05-31
............\...............\............................\NI_TCLK_SyncPrep_shm.m,2145,2014-05-31
............\...............\............................\NI_TCLK_Trigger_shm.m,770,2014-05-31
............\...............\splitData_shm.m,1826,2014-05-31
............\...............\Traditional
............\...............\...........\exciteAndAquire_shm.m,4002,2014-05-31
............\FeatureClassification
............\.....................\getThresholdChi2_shm.m,871,2014-05-31
............\.....................\OutlierDetection
............\.....................\................\AssembledDetectors
............\.....................\................\..................\Templates
............\.....................\................\..................\.........\trainBegin.txt,1921,2011-01-05
............\.....................\................\..................\.........\trainEnd.txt,1511,2011-01-05
............\.....................\................\..................\.........\trainMid.txt,449,2011-01-05
............\.....................\................\assembleOutlierDetector_shm.m,14193,2014-05-31
............\.....................\................\detectOutlier_shm.m,4774,2014-05-31
............\.....................\................\NonParametricDetectors
............\.....................\................\......................\FastMetricKernelEstimation
............\.....................\................\......................\..........................\buildCoverTree_shm.m,4739,2014-05-31
............\.....................\................\......................\..........................\DistanceMetrics
............\.....................\................\......................\..........................\...............\l2Dist_shm.m,1086,2014-05-31
............\.....................\................\......................\..........................\...............\lkDist_shm.m,1072,2014-05-31
............\.....................\................\......................\..........................\fastMetricKernelDensity_shm.m,4216,2014-05-31
............\.....................\................\......................\..........................\metricKernel_shm.m,1664,2014-05-31
............\.....................\................\......................\Kernels
............\.....................\................\......................\.......\cosineKernel_shm.m,1060,2014-05-31
............\.....................\................\......................\.......\epanechnikovKernel_shm.m,1069,2014-05-31
............\.....................\................\......................\.......\gaussianKernel_shm.m,1028,2014-05-31
............\.....................\................\......................\.......\quarticKernel_shm.m,1059,2014-05-31
............\.....................\................\......................\.......\triangleKernel_shm.m,1045,2014-05-31
............\.....................\................\......................\.......\triweightKernel_shm.m,1066,2014-05-31
............\.....................\................\......................\.......\uniformKernel_shm.m,1017,2014-05-31
............\.....................\................\......................\learnFastMetricKernelDensity_shm.m,3790,2014-05-31
............\.....................\................\......................\learnKernelDensity_shm.m,3155,2014-05-31
............\.....................\................\......................\learnNLPCA_shm.m,3955,2014-05-31
............\.....................\................\......................\scoreFastMetricKernelDensity_shm.m,1812,2014-05-31
............\.....................\................\......................\scoreKernelDensity_shm.m,1825,2014-05-31
............\.....................\................\......................\scoreNLPCA_shm.m,2545,2014-05-31
............\.....................\................\ParametricDetectors
............\.....................\................\...................\learnFactorAnalysis_shm.m,3903,2014-05-31
............\.....................\................\...................\learnMahalanobis_shm.m,1337,2014-05-31
............\.....................\................\...................\learnPCA_shm.m,2776,2014-05-31
............\.....................\................\...................\learnSVD_shm.m,2761,2014-05-31
............\.....................\................\...................\scoreFactorAnalysis_shm.m,3921,2014-05-31
............\.....................\................\...................\scoreMahalanobis_shm.m,1798,2014-05-31
............\.....................\................\...................\scorePCA_shm.m,2077,2014-05-31
............\.....................\................\...................\scoreSVD_shm.m,3095,2014-05-31
............\.....................\................\SAVEDIR
............\.....................\................\SemiParametricDetectors
............\.....................\................\.......................\learnGMMSemiParametricModel_shm.m,1348,2014-05-31
............\.....................\................\.......................\PartitioningAlgorithms
............\.....................\................\.......................\......................\kdTree_shm.m,3399,2014-05-31
............\.....................\................\.......................\......................\kMeans_shm.m,1261,2014-05-31
............\.....................\................\.......................\......................\kMedians_shm.m,1974,2014-05-31
............\.....................\................\.......................\......................\pdTree_shm.m,3044,2014-05-31
............\.....................\................\.......................\......................\rpTree_shm.m,2825,2014-05-31
............\.....................\................\.......................\scoreGMMSemiParametricModel_shm.m,1373,2014-05-31
............\.....................\................\.......................\Utilities
............\.....................\................\.......................\.........\learnGMM_shm.m,2195,2014-05-31
............\.....................\................\.......................\.........\scoreGMM_shm.m,1706,2014-05-31
............\.....................\................\trainOutlierDetector_shm.m,4320,2014-05-31
............\.....................\................\UseCaseWrappers
............\.....................\................\...............\detectorMultiSiteWrapper_shm.m,6291,2014-05-31
............\.....................\PCA_shm.m,3025,2014-05-31
............\.....................\plotROC_shm.m,4187,2014-05-31

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • matlab
    蚁群算法的matlab实现程序,简单易懂,对于学习者来说,不错(Ant colony algorithm matlab implementation process, easy to understand, for a student perspective, it is true)
    2010-01-04 14:39:28下载
    积分:1
  • proficient-MATLAB
    matlab相關教學書籍matlab相關教學書籍matlab相關教學書籍(proficient MATLAB)
    2011-05-17 11:25:27下载
    积分:1
  • bp_pid
    神经网络PID控制算法的实现,相比于PID,神经网络PID具有更好的控制效果。(Neural network PID control algorithm, compared to PID, PID neural network has better control effect.)
    2013-10-12 17:44:33下载
    积分:1
  • matlabcodefosolvingpartialdiferentialeqn
    This code is for solving differential eqns using cholesky decomposition method, gausselimination method, croutsdecomposition method, LaverrierFaddeev, GAUSSSIEDELGAUSSSIEDEL method
    2009-09-23 15:21:58下载
    积分:1
  • DE
    说明:  动态矩阵控制MATLAB源程序,是基于阶跃响应的模型预测控制(Dynamic Matrix Control MATLAB source code is based on the step response of model predictive control)
    2010-08-23 19:34:59下载
    积分:1
  • GENETIC
    GENETIC ALGORITHMS EXAMPLES IN MATLAB
    2012-03-28 22:27:06下载
    积分:1
  • CognitiveRadioNewFIG2
    Cooperative spectrum sensing and adapting to the environment, a cognitive radio is able to fill spectrum holes and serve without causing harmful interference to the licensed user. We consider optimization of cooperative spectrum sensing with energy detection to minimize the total error rate.
    2014-09-05 20:07:45下载
    积分:1
  • HW1_3_signerrorLMS
    Adaptive filter 三种演算法RLS,LNS sign error LMS(three RLS algorithm. LNS sign error LMS)
    2006-11-05 01:29:33下载
    积分:1
  • tele
    在电话拨号时 ,每个按键都使用双频信号进行区分的,本MATLAB程序就是用来模拟发送号码的发送和接受过程,并发出按键音。(In a telephone dial-up, each button using the dual-band signal distinction, the MATLAB program is used to simulate the sending number to send and accept the process and issue the key tone.)
    2012-06-20 13:45:14下载
    积分:1
  • a
    说明:  平滑滤波,自己写的小程序,希望对大家有所帮助(Filtering, write a small program, we want to help)
    2010-08-23 16:43:37下载
    积分:1
  • 696516资源总数
  • 106409会员总数
  • 8今日下载