登录
首页 » matlab » SHMFunctions

SHMFunctions

于 2016-04-18 发布 文件大小:325KB
0 175
下载积分: 1 下载次数: 18

代码说明:

  美 Los Alamos实验室 结构健康监测SHM MATLAB工具包(Structural Health MOnitoring (SHM) MATLAB toolbox)

文件列表:

SHMFunctions
............\Auxiliary
............\.........\Plotting
............\.........\........\labelPlot_shm.m,1755,2014-05-31
............\.........\SensorSupport
............\.........\.............\OptimalSensorPlacement
............\.........\.............\......................\Geometry
............\.........\.............\......................\........\addResp2Geom_shm.m,2101,2014-05-31
............\.........\.............\......................\........\getElementCentroids_shm.m,1008,2014-05-31
............\.........\.............\......................\........\getSensorLayout_shm.m,1958,2014-05-31
............\.........\.............\......................\........\nodeElementPlot_shm.m,3859,2014-05-31
............\.........\.............\......................\........\responseInterp_shm.m,3689,2014-05-31
............\.........\.............\......................\OSP_FisherInfoEIV_shm.m,3848,2014-05-31
............\.........\.............\......................\OSP_MaxNorm_shm.m,5815,2014-05-31
............\.........\.............\SensorDiagnostic
............\.........\.............\................\sdAutoclassify_shm.m,5775,2014-05-31
............\.........\.............\................\sdFeature_shm.m,2648,2014-05-31
............\.........\.............\................\sdPlot_shm.m,5023,2014-05-31
............\DataAcquisition
............\...............\bandLimWhiteNoise_shm.m,1606,2014-05-31
............\...............\buildPairList_shm.m,1965,2014-05-31
............\...............\getGausModSin_shm.m,1929,2014-05-31
............\...............\NationalInstrumentsHighSpeed
............\...............\............................\niFgen.mdd,216037,2011-01-05
............\...............\............................\niScope.mdd,145746,2011-01-05
............\...............\............................\niSwitch.mdd,89139,2011-01-05
............\...............\............................\niTclk.mdd,1941,2011-01-05
............\...............\............................\NI_FGEN_InitConfig_shm.m,1816,2014-05-31
............\...............\............................\NI_FGEN_PrepWave_shm.m,1682,2014-05-31
............\...............\............................\NI_FGEN_SetOptions_shm.m,1929,2014-05-31
............\...............\............................\NI_multiplexSession_shm.m,3306,2014-05-31
............\...............\............................\NI_SCOPE_FetchWaves_shm.m,1670,2014-05-31
............\...............\............................\NI_SCOPE_InitConfig_shm.m,2190,2014-05-31
............\...............\............................\NI_SCOPE_SetOptions_shm.m,2209,2014-05-31
............\...............\............................\NI_SWITCH_Connect_shm.m,2432,2014-05-31
............\...............\............................\NI_SWITCH_Init_shm.m,1002,2014-05-31
............\...............\............................\NI_TCLK_SyncPrep_shm.m,2145,2014-05-31
............\...............\............................\NI_TCLK_Trigger_shm.m,770,2014-05-31
............\...............\splitData_shm.m,1826,2014-05-31
............\...............\Traditional
............\...............\...........\exciteAndAquire_shm.m,4002,2014-05-31
............\FeatureClassification
............\.....................\getThresholdChi2_shm.m,871,2014-05-31
............\.....................\OutlierDetection
............\.....................\................\AssembledDetectors
............\.....................\................\..................\Templates
............\.....................\................\..................\.........\trainBegin.txt,1921,2011-01-05
............\.....................\................\..................\.........\trainEnd.txt,1511,2011-01-05
............\.....................\................\..................\.........\trainMid.txt,449,2011-01-05
............\.....................\................\assembleOutlierDetector_shm.m,14193,2014-05-31
............\.....................\................\detectOutlier_shm.m,4774,2014-05-31
............\.....................\................\NonParametricDetectors
............\.....................\................\......................\FastMetricKernelEstimation
............\.....................\................\......................\..........................\buildCoverTree_shm.m,4739,2014-05-31
............\.....................\................\......................\..........................\DistanceMetrics
............\.....................\................\......................\..........................\...............\l2Dist_shm.m,1086,2014-05-31
............\.....................\................\......................\..........................\...............\lkDist_shm.m,1072,2014-05-31
............\.....................\................\......................\..........................\fastMetricKernelDensity_shm.m,4216,2014-05-31
............\.....................\................\......................\..........................\metricKernel_shm.m,1664,2014-05-31
............\.....................\................\......................\Kernels
............\.....................\................\......................\.......\cosineKernel_shm.m,1060,2014-05-31
............\.....................\................\......................\.......\epanechnikovKernel_shm.m,1069,2014-05-31
............\.....................\................\......................\.......\gaussianKernel_shm.m,1028,2014-05-31
............\.....................\................\......................\.......\quarticKernel_shm.m,1059,2014-05-31
............\.....................\................\......................\.......\triangleKernel_shm.m,1045,2014-05-31
............\.....................\................\......................\.......\triweightKernel_shm.m,1066,2014-05-31
............\.....................\................\......................\.......\uniformKernel_shm.m,1017,2014-05-31
............\.....................\................\......................\learnFastMetricKernelDensity_shm.m,3790,2014-05-31
............\.....................\................\......................\learnKernelDensity_shm.m,3155,2014-05-31
............\.....................\................\......................\learnNLPCA_shm.m,3955,2014-05-31
............\.....................\................\......................\scoreFastMetricKernelDensity_shm.m,1812,2014-05-31
............\.....................\................\......................\scoreKernelDensity_shm.m,1825,2014-05-31
............\.....................\................\......................\scoreNLPCA_shm.m,2545,2014-05-31
............\.....................\................\ParametricDetectors
............\.....................\................\...................\learnFactorAnalysis_shm.m,3903,2014-05-31
............\.....................\................\...................\learnMahalanobis_shm.m,1337,2014-05-31
............\.....................\................\...................\learnPCA_shm.m,2776,2014-05-31
............\.....................\................\...................\learnSVD_shm.m,2761,2014-05-31
............\.....................\................\...................\scoreFactorAnalysis_shm.m,3921,2014-05-31
............\.....................\................\...................\scoreMahalanobis_shm.m,1798,2014-05-31
............\.....................\................\...................\scorePCA_shm.m,2077,2014-05-31
............\.....................\................\...................\scoreSVD_shm.m,3095,2014-05-31
............\.....................\................\SAVEDIR
............\.....................\................\SemiParametricDetectors
............\.....................\................\.......................\learnGMMSemiParametricModel_shm.m,1348,2014-05-31
............\.....................\................\.......................\PartitioningAlgorithms
............\.....................\................\.......................\......................\kdTree_shm.m,3399,2014-05-31
............\.....................\................\.......................\......................\kMeans_shm.m,1261,2014-05-31
............\.....................\................\.......................\......................\kMedians_shm.m,1974,2014-05-31
............\.....................\................\.......................\......................\pdTree_shm.m,3044,2014-05-31
............\.....................\................\.......................\......................\rpTree_shm.m,2825,2014-05-31
............\.....................\................\.......................\scoreGMMSemiParametricModel_shm.m,1373,2014-05-31
............\.....................\................\.......................\Utilities
............\.....................\................\.......................\.........\learnGMM_shm.m,2195,2014-05-31
............\.....................\................\.......................\.........\scoreGMM_shm.m,1706,2014-05-31
............\.....................\................\trainOutlierDetector_shm.m,4320,2014-05-31
............\.....................\................\UseCaseWrappers
............\.....................\................\...............\detectorMultiSiteWrapper_shm.m,6291,2014-05-31
............\.....................\PCA_shm.m,3025,2014-05-31
............\.....................\plotROC_shm.m,4187,2014-05-31

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • annealing
    简单实用的模拟退火算法(SB/SW) 提供一个对理解模拟退火算法很好的程序示例(Simple and practical simulated annealing algorithm (SB/SW))
    2009-03-16 09:48:52下载
    积分:1
  • fullbridgemosfets
    DC to DC converter with simple full bridge converter
    2014-08-14 16:42:22下载
    积分:1
  • DAOXIANDUQU
    测量导线网matlab数据导入程序,具有良好的数据实现功能(Traverse network matlab data into the program, with good data to achieve functional)
    2011-06-05 16:39:08下载
    积分:1
  • LSSVM
    改进支持相机模型对电量进行了预测,内含电量数据,易学习,易改造(An improved support camera model is used to predict the quantity of electricity, and the data contained in the battery are easy to learn and easy to transform)
    2020-09-09 15:58:02下载
    积分:1
  • 01
    说明:  matlab教程,希望大家一起来学习,我看多好几遍了,非常不错。(matlab tutorial I hope everyone will work together to learn, I can see how good a few times, and very good.)
    2009-10-12 09:38:48下载
    积分:1
  • Codigo_ECG_denoising
    A code to analyse ecg signals
    2011-04-30 01:48:54下载
    积分:1
  • matlab
    matlab图像处理命令,很好用的,欢迎大家下载(matlab image processing commands, useful, and welcome to download)
    2010-06-05 11:21:41下载
    积分:1
  • MATLABWord
    MATLAB实现的OKumura-HATA仿真(MATLAB realization of simulation OKumura-HATA)
    2009-04-19 22:20:47下载
    积分:1
  • code
    毕业论文参考资料,从期刊网上下载的,如果有需要共大家参考(Thesis reference materials downloaded from the journal, if you need a total of reference)
    2011-05-28 17:05:41下载
    积分:1
  • 1-(2)
    projet 2 is very importand
    2014-12-12 04:30:01下载
    积分:1
  • 696516资源总数
  • 106409会员总数
  • 8今日下载