登录
首页 » matlab » CNN_face_detection-master

CNN_face_detection-master

于 2016-04-27 发布 文件大小:8176KB
0 201
下载积分: 1 下载次数: 111

代码说明:

  CVPR2015级联CNN进行人脸检测的MATLAB实现代码,按照流程实现,效果绝佳(CVPR2015 cascade CNN for face detection MATLAB implementation code, according to the sequence, and excellent results)

文件列表:

CNN_face_detection-master
.........................\face_calibration
.........................\................\calibration_AFLW.py,3626,2015-12-22
.........................\................\calibration_CACD.py,2131,2015-12-22
.........................\................\shuffle_write_calibration.py,953,2015-12-22
.........................\................\write_train_val_calibration.py,2505,2015-12-22
.........................\face_detection
.........................\..............\create_mean_numpy.py,508,2015-12-22
.........................\..............\detections
.........................\..............\..........\ContROC.txt,26681,2015-12-22
.........................\..............\..........\DiscROC-01.txt,42393,2015-12-22
.........................\..............\..........\DiscROC-02.txt,44091,2015-12-22
.........................\..............\..........\DiscROC-03.txt,43093,2015-12-22
.........................\..............\..........\DiscROC-04.txt,44472,2015-12-22
.........................\..............\..........\DiscROC-05.txt,44802,2015-12-22
.........................\..............\..........\DiscROC-06.txt,45816,2015-12-22
.........................\..............\..........\DiscROC-07.txt,39458,2015-12-22
.........................\..............\..........\DiscROC-08.txt,42233,2015-12-22
.........................\..............\..........\DiscROC-09.txt,40040,2015-12-22
.........................\..............\..........\DiscROC-10.txt,44786,2015-12-22
.........................\..............\..........\fold-01-out.txt,48332,2015-12-22
.........................\..............\..........\fold-02-out.txt,49260,2015-12-22
.........................\..............\..........\fold-03-out.txt,47400,2015-12-22
.........................\..............\..........\fold-04-out.txt,49861,2015-12-22
.........................\..............\..........\fold-05-out.txt,49954,2015-12-22
.........................\..............\..........\fold-06-out.txt,40960,2015-12-22
.........................\..............\..........\fold-07-out.txt,50576,2015-12-22
.........................\..............\..........\fold-08-out.txt,53602,2015-12-22
.........................\..............\..........\fold-09-out.txt,50384,2015-12-22
.........................\..............\..........\fold-10-out.txt,56699,2015-12-22
.........................\..............\DiscROC.txt,431184,2015-12-22
.........................\..............\evaluate_fddb.py,1025,2015-12-22
.........................\..............\face_12c_detect.py,27726,2015-12-22
.........................\..............\face_48_AFW.py,27228,2015-12-22
.........................\..............\face_48_fddb.py,28745,2015-12-22
.........................\..............\face_48_fddb_fullconv.py,28464,2015-12-22
.........................\..............\face_cascade_AFW.py,27228,2015-12-22
.........................\..............\face_cascade_fddb.py,28745,2015-12-22
.........................\..............\face_cascade_fullconv_fddb.py,3549,2015-12-22
.........................\..............\face_cascade_fullconv_fddb_single_crop.py,2989,2015-12-22
.........................\..............\face_cascade_fullconv_quantize_fddb.py,3734,2015-12-22
.........................\..............\face_cascade_fullconv_signal_quantize_fddb.py,22189,2015-12-22
.........................\..............\face_cascade_fullconv_single_crop_single_image.py,1468,2015-12-22
.........................\..............\face_detection_example.py,794,2015-12-22
.........................\..............\face_detection_functions.py,40359,2015-12-22
.........................\..............\face_detection_functions.pyc,24466,2015-12-22
.........................\..............\face_ViolaJones.py,2886,2015-12-22
.........................\..............\FDDB-fold
.........................\..............\.........\FDDB-fold-01.txt,6747,2015-12-22
.........................\..............\.........\FDDB-fold-02.txt,6646,2015-12-22
.........................\..............\.........\FDDB-fold-03.txt,6392,2015-12-22
.........................\..............\.........\FDDB-fold-04.txt,7018,2015-12-22
.........................\..............\.........\FDDB-fold-05.txt,6937,2015-12-22
.........................\..............\.........\FDDB-fold-06.txt,7024,2015-12-22
.........................\..............\.........\FDDB-fold-07.txt,6489,2015-12-22
.........................\..............\.........\FDDB-fold-08.txt,6458,2015-12-22
.........................\..............\.........\FDDB-fold-09.txt,6014,2015-12-22
.........................\..............\.........\FDDB-fold-10.txt,6528,2015-12-22
.........................\..............\fold-01-out.txt,17176,2015-12-22
.........................\..............\fold-02-out.txt,17146,2015-12-22
.........................\..............\fold-03-out.txt,16870,2015-12-22
.........................\..............\fold-04-out.txt,18345,2015-12-22
.........................\..............\fold-05-out.txt,17735,2015-12-22
.........................\..............\fold-06-out.txt,17959,2015-12-22
.........................\..............\fold-07-out.txt,16995,2015-12-22
.........................\..............\fold-08-out.txt,16964,2015-12-22
.........................\..............\fold-09-out.txt,16284,2015-12-22
.........................\..............\fold-10-out.txt,17664,2015-12-22
.........................\..............\load_model_functions.py,8499,2015-12-22
.........................\..............\load_model_functions.pyc,4483,2015-12-22
.........................\..............\many2oneText_fold.py,595,2015-12-22
.........................\..............\many2oneText_out.py,589,2015-12-22
.........................\..............\old_detection_methods_backup.py,16932,2015-12-22
.........................\..............\sortROC.py,600,2015-12-22
.........................\..............\test.py,16248,2015-12-22
.........................\..............\test_mean.py,1264,2015-12-22
.........................\face_net_surgery
.........................\................\face12c_full_conv_params.txt,119429,2015-12-22
.........................\................\face12c_full_conv_quantize_3.py,3983,2015-12-22
.........................\................\face12c_full_conv_quantize_3.txt,119429,2015-12-22
.........................\................\face12c_full_conv_quantize_3_params.txt,38333,2015-12-22
.........................\................\face12c_full_conv_quantize_3_to_9.py,3573,2015-12-22
.........................\................\face12c_full_conv_test.py,4698,2015-12-22
.........................\................\face_12_cal_quantize_3_to_9.py,4423,2015-12-22
.........................\................\face_12_full_conv_params.txt,119429,2015-12-22
.........................\................\face_12_full_conv_test.py,4649,2015-12-22
.........................\................\face_12_quantize_3.py,3983,2015-12-22
.........................\................\face_12_quantize_8.py,1467,2015-12-22
.........................\................\face_12_surgery.py,2393,2015-12-22
.........................\................\face_24c_quantize_3_to_9.py,3942,2015-12-22
.........................\................\face_24_cal_quantize_3_to_9.py,3947,2015-12-22
.........................\................\face_48c_quantize_3_to_9.py,4028,2015-12-22
.........................\................\face_48_cal_quantize_3_to_9.py,4037,2015-12-22
.........................\................\face_48_full_conv_test.py,1704,2015-12-22
.........................\................\face_48_surgery.py,2030,2015-12-22
.........................\................\face_range.txt,3093,2015-12-22
.........................\................\face_range_quantize_objective.txt,4465,2015-12-22
.........................\................\face_weight_bias_range.py,6716,2015-12-22
.........................\................\htm" target=_blank>file_write,1469,2015-12-22
.........................\................\full_conv_blobs_ranges.txt,3723,2015-12-22

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • VC++andmatlab
    讨论了VC++语言和Matlab语言的接口技术,并有具体程序,为二者的交互编程提供了可能。(Discussed VC++ Language and Matlab language interface technology, and there are specific procedures for the two interactive programming possible.)
    2008-04-24 22:35:54下载
    积分:1
  • Basedonthecognitivenetworkofgraphcoloringmodelofth
    说明:  本文研究了认知网络中基于图论着色模型的频谱分配算法。(This paper studies the cognitive network model based on graph theory spectrum allocation algorithm for coloring.)
    2010-03-18 11:10:35下载
    积分:1
  • ASegmentationAlgorithmforContrast-EnhancedImages
    说明:  基于Graph Cut的一种分割方法,比较著名的论文。(Graph Cut based on a segmentation method to compare the famous paper.)
    2010-04-23 10:47:28下载
    积分:1
  • surface_impedance
    This matlab code is graphene s surface_impedance and conductivity
    2014-08-20 22:27:35下载
    积分:1
  • optimised-forwarding-of-wsn-using-fuzzy-interface
    optimised forwarding of wsn using fuzzy interface systms
    2012-02-11 11:52:06下载
    积分:1
  • dct
    在8*8子图像块前提下,不同压缩比对图像压缩效果的影响(8* 8 sub-image block under the premise of different compression than the image compression)
    2012-04-04 16:46:36下载
    积分:1
  • hwAFRLS4
    对混噪的信号进行处理实现自适应滤波器功能,从而可以把噪声很好地滤除掉,由描绘出来的滤波全系数变化曲线可以看出自适应滤波器的良好的滤波效果。(Mixed noise for adaptive signal processing filter function, which can filter out the noise well, portrayed by the curve of the filter coefficients can be seen the whole adaptive filter a good filter effect.)
    2011-07-28 09:18:53下载
    积分:1
  • c12_limiter
    基带非线性器,最常用的基带非线性器是幂级数模型和限幅器模型,这里给出的是幂级数模型的。(Baseband nonlinear device, the most common is the baseband power series model and the nonlinear limiter model, where the model is given a power series.)
    2013-09-07 09:31:41下载
    积分:1
  • 80308116wavelet_code
    基于MATLAB的小波变换,源码很有用,可以直接运行(using VC++ Wavelet image enhancement)
    2013-11-28 01:41:04下载
    积分:1
  • pcaa-fisher
    pca and fisher implementation in matlab for feature extraction
    2014-01-31 17:10:54下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载