-
case
说明: 基于unittest的测试用例代码,仅供参考(Unittest-based test case code,for reference only)
- 2020-06-24 18:00:01下载
- 积分:1
-
方块棋盘
说明: 它非常适合初学者学习python,一个简单易懂的例子,让初学者可以快速学会猜数的小游戏,便于学习者快速掌握python的语法和结构。(It is very suitable for beginners to learn python, a simple and easy to understand example, so that beginners can quickly learn to guess the number of small games, easy for learners to quickly master Python syntax and structure.)
- 2020-10-09 09:05:57下载
- 积分:1
-
Python3.x+ django2.x 在线教育系统源码
使用Python3.x与Django2.0.1开发的在线教育平台网站 运行步骤如下: $ cd 到当前程序目录$ pip install -r requirements.txt$ python manage.py runserver
- 2018-04-14下载
- 积分:1
-
Python Cookbook(第3版)中文版
经典入门教程,快速入手,纯英文版,满足python 开发人员需求(Classic introductory tutorial)
- 2017-11-19 15:11:58下载
- 积分:1
-
直方图代码
直方图(Histogram)又称质量分布图,是一种统计报告图,也是表示资料变化情况的一种主要工具。使用opecv实现,适合初学者了解opencv里面对于图像处理的基本过程。
- 2022-01-26 04:12:20下载
- 积分:1
-
分水岭
说明: 基于Python的分水岭算法可以自动分割连接的图像(Python - based watershed algorithm can automatically segment connected images)
- 2019-01-10 15:28:35下载
- 积分:1
-
corepythonprogramming
关于PYTHON编成语言的最新中文翻译书,有大量的代码,还增加讲解最新的功能(About PYTHON compiled the latest English language translation of the book, there are a lot of code, but also on the latest features to increase)
- 2009-09-26 22:33:20下载
- 积分:1
-
EOG-Artifact-Filtering-master
ica和FAST-ICA用于eeg伪迹去除,python算法(Ica and FAST-ICA for eeg artifact removal, python algorithm)
- 2020-08-15 08:48:26下载
- 积分:1
-
数字分割、阈值分割、轮廓提取
自己在做数字识别时下载 参考别人的源码 拿出来和大家共享
- 2022-02-25 21:35:45下载
- 积分:1
-
svm解析验证码
SVM做的验证码识别,准确率85%# -*- coding: utf-8 -*
__author__ = "eple"
from svmutil import *
from PIL import Image
from numpy import *
import os
import string
def getFeatures(path):
features = []
im = array(Image.open(path).convert("L"))
h,w = shape(im)
for i in xrange(0,h):
for j in xrange(0,w):
im[i][j] = 0 if im[i][j] < 128 else 1
for i in xrange(1,h-1):
for j in xrange(1,w-1):
if im[i][j] != 0 and im[i-1][j]==0 and im[i][j-1]==0 and im[i][j+1]==0 and im[i+1][j]==0:
im[i][j] = 0
for rang in [xrange(2,8), xrange(12,18), xrange(22,28), xrange(32,38)]:
temp = []
for i in rang:
for j in xrange(0,10):
temp.append(im[j][i])
features.append(temp)
return features
- 2022-04-14 17:07:19下载
- 积分:1